Садржај
Слике
Уплоадјуј своје слике
DSS Images Other Images
Везани чланци
Mid-infrared Period-luminosity Relations of RR Lyrae Stars Derived from the WISE Preliminary Data Release Interstellar dust presents a significant challenge to extendingparallax-determined distances of optically observed pulsationalvariables to larger volumes. Distance ladder work at mid-infraredwavebands, where dust effects are negligible and metallicitycorrelations are minimized, has been largely focused on few-epochCepheid studies. Here we present the first determination of mid-infraredperiod-luminosity (PL) relations of RR Lyrae stars from phase-resolvedimaging using the preliminary data release of the Wide-field InfraredSurvey Explorer (WISE). We present a novel statistical framework topredict posterior distances of 76 well observed RR Lyrae that uses theoptically constructed prior distance moduli while simultaneouslyimposing a power-law PL relation to WISE-determined mean magnitudes. Wefind that the absolute magnitude in the bluest WISE filter is MW1 = (- 0.421 ± 0.014) - (1.681 ±0.147)log10(P/0.50118 day), with no evidence for acorrelation with metallicity. Combining the results from the threebluest WISE filters, we find that a typical star in our sample has adistance measurement uncertainty of 0.97% (statistical) plus 1.17%(systematic). We do not fundamentalize the periods of RRc stars toimprove their fit to the relations. Taking the Hipparcos-derived meanV-band magnitudes, we use the distance posteriors to determine a newoptical metallicity-luminosity relation. The results of this analysiswill soon be tested by Hubble Space Telescope parallax measurements and,eventually, with the GAIA astrometric mission.
| Random forest automated supervised classification of Hipparcos periodic variable stars We present an evaluation of the performance of an automatedclassification of the Hipparcos periodic variable stars into 26 types.The sub-sample with the most reliable variability types available in theliterature is used to train supervised algorithms to characterize thetype dependencies on a number of attributes. The most useful attributesevaluated with the random forest methodology include, in decreasingorder of importance, the period, the amplitude, the V-I colour index,the absolute magnitude, the residual around the folded light-curvemodel, the magnitude distribution skewness and the amplitude of thesecond harmonic of the Fourier series model relative to that of thefundamental frequency. Random forests and a multi-stage scheme involvingBayesian network and Gaussian mixture methods lead to statisticallyequivalent results. In standard 10-fold cross-validation (CV)experiments, the rate of correct classification is between 90 and 100per cent, depending on the variability type. The main mis-classificationcases, up to a rate of about 10 per cent, arise due to confusion betweenSPB and ACV blue variables and between eclipsing binaries, ellipsoidalvariables and other variability types. Our training set and thepredicted types for the other Hipparcos periodic stars are availableonline.
| Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry Astrometric surveys provide the opportunity to measure the absolutemagnitudes of large numbers of stars, but only if the individualline-of-sight extinctions are known. Unfortunately, extinction is highlydegenerate with stellar effective temperature when estimated frombroad-band optical/infrared photometry. To address this problem, Iintroduce a Bayesian method for estimating the intrinsic parameters of astar and its line-of-sight extinction. It uses both photometry andparallaxes in a self-consistent manner in order to provide anon-parametric posterior probability distribution over the parameters.The method makes explicit use of domain knowledge by employing theHertzsprung-Russell Diagram (HRD) to constrain solutions and to ensurethat they respect stellar physics. I first demonstrate this method byusing it to estimate effective temperature and extinction from BVJHKdata for a set of artificially reddened Hipparcos stars, for whichaccurate effective temperatures have been estimated from high-resolutionspectroscopy. Using just the four colours, we see the expected strongdegeneracy (positive correlation) between the temperature andextinction. Introducing the parallax, apparent magnitude and the HRDreduces this degeneracy and improves both the precision (reduces theerror bars) and the accuracy of the parameter estimates, the latter byabout 35 per cent. The resulting accuracy is about 200 K in temperatureand 0.2 mag in extinction. I then apply the method to estimate theseparameters and absolute magnitudes for some 47 000 F, G, K Hipparcosstars which have been cross-matched with Two-Micron All-Sky Survey(2MASS). The method can easily be extended to incorporate the estimationof other parameters, in particular metallicity and surface gravity,making it particularly suitable for the analysis of the 109stars from Gaia.
| The luminosities and distance scales of type II Cepheid and RR Lyrae variables Infrared and optical absolute magnitudes are derived for the type IICepheids κ Pav and VY Pyx using revised Hipparcos parallaxes andfor κ Pav, V553 Cen and SW Tau from pulsational parallaxes.Revised Hipparcos and HST parallaxes for RR Lyrae agree satisfactorilyand are combined in deriving absolute magnitudes. Phase-corrected J, Hand Ks mags are given for 142 Hipparcos RR Lyraes based onTwo-Micron All-Sky Survey observations. Pulsation and trigonometricalparallaxes for classical Cepheids are compared to establish the bestvalue for the projection factor (p) used in pulsational analyses.The MV of RR Lyrae itself is 0.16 +/- 0.12 mag brighter thanpredicted from an MV-[Fe/H] relation based on RR Lyrae starsin the Large Magellanic Cloud (LMC) at a modulus of 18.39 +/- 0.05 asfound from classical Cepheids. This is consistent with the prediction ofCatelan & Cortés that it is overluminous for its metallicity.The results for the metal- and carbon-rich Galactic disc stars, V553 Cenand SW Tau, each with small internal errors (+/-0.08 mag) have a meandeviation of only 0.02 mag from the period-luminosity (PL) relationestablished by Matsunaga et al. for type II Cepheids in globularclusters and with a zero-point based on the same LMC-scale. Comparingdirectly the luminosities of these two stars with published data on typeII Cepheids in the LMC and in the Galactic bulge leads to an LMC modulusof 18.37 +/- 0.09 and a distance to the Galactic Centre of R0= 7.64 +/- 0.21kpc. The data for VY Pyx agree with these results withinthe uncertainties set by its parallax. Evidence is presented thatκ Pav may have a close companion and possible implications of thisare discussed. If the pulsational parallax of this star is incorporatedin the analyses, the distance scales just discussed will be increased by~0.15 +/- 0.15 mag. V553 Cen and SW Tau show that at optical wavelengthsPL relations are wider for field stars than for those in globularclusters. This is probably due to a narrower range of masses in thelatter case.
| The GEOS RR Lyr Survey Not Available
| Photoelectric Minima of Selected Eclipsing Binaries and Maxima of Pulsating Stars Not Available
| Proper identification of RR Lyrae stars brighter than 12.5 mag RR Lyrae stars are of great importance for investigations of Galacticstructure. However, a complete compendium of all RR-Lyraes in the solarneighbourhood with accurate classifications and coordinates does notexist to this day. Here we present a catalogue of 561 local RR-Lyraestars (V_max ≤ 12.5 mag) according to the magnitudes given in theCombined General Catalogue of Variable Stars (GCVS) and 16 fainter ones.The Tycho2 catalogue contains ≃100 RR Lyr stars. However, manyobjects have inaccurate coordinates in the GCVS, the primary source ofvariable star information, so that a reliable cross-identification isdifficult. We identified RR Lyrae from both catalogues based on anintensive literature search. In dubious cases we carried out photometryof fields to identify the variable. Mennessier & Colome (2002,A&A, 390, 173) have published a paper with Tyc2-GCVSidentifications, but we found that many of their identifications arewrong.
| RR Lyrae stars: kinematics, orbits and z-distribution RR Lyrae stars in the Milky Way are good tracers to study the kinematicbehaviour and spatial distribution of older stellar populations. Arecently established well documented sample of 217 RR Lyr stars withV<12.5 mag, for which accurate distances and radial velocities aswell as proper motions from the Hipparcos and Tycho-2 catalogues areavailable, has been used to reinvestigate these structural parameters.The kinematic parameters allowed to calculate the orbits of the stars.Nearly 1/3 of the stars of our sample have orbits staying near the MilkyWay plane. Of the 217 stars, 163 have halo-like orbits fulfilling one ofthe following criteria: Θ < 100 km s-1, orbiteccentricity >0.4, and normalized maximum orbital z-distance>0.45. Of these stars roughly half have retrograde orbits. Thez-distance probability distribution of this sample shows scale heightsof 1.3±0.1 kpc for the disk component and 4.6±0.3 kpc forthe halo component. With our orbit statistics method we found a(vertical) spatial distribution which, out to z=20 kpc, is similar tothat found with other methods. This distribution is also compatible withthe ones found for blue (HBA and sdB) halo stars. The circular velocityΘ, the orbit eccentricity, orbit z-extent and [Fe/H] are employedto look for possible correlations. If any, it is that the metal poorstars with [Fe/H] <1.0 have a wide symmetric distribution aboutΘ=0, thus for this subsample on average a motion independent ofdisk rotation. We conclude that the Milky Way possesses a halo componentof old and metal poor stars with a scale height of 4-5 kpc having randomorbits. The presence in our sample of a few metal poor stars (thus partof the halo population) with thin disk-like orbits is statistically notsurprising. The midplane density ratio of halo to disk stars is found tobe 0.16, a value very dependent on proper sample statistics.
| Iron abundances derived from RR Lyrae light curves and low-dispersion spectroscopy With the aid of the All Sky Automated Survey (ASAS) database on theGalactic field, we compare the iron abundances of fundamental mode RRLyrae stars derived from the Fourier parameters with those obtained fromlow-dispersion spectroscopy. We show from a set of 79 stars, distinctfrom the original calibrating sample of the Fourier method and selectedwithout quality control, that almost all discrepant estimates are theresults of some defects or peculiarities either in the photometry or inthe spectroscopy. Omitting objects deviating by more than 0.4 dex, theremaining subsample of 64 stars yields Fourier abundances that fit thespectroscopic ones with σ=0.20 dex. Other, more stringentselection criteria and different Fourier decompositions lead to smallersubsamples and concomitant better agreement, down to σ=0.16 dex.Except perhaps for two variables among the 163 stars, comprised of theASAS variables and those of the original calibrating set of the Fouriermethod, all discrepant values can be accounted for by observationalnoise and insufficient data coverage. We suggest that the agreement canbe further improved when new, more accurate spectroscopic data becomeavailable for a test with the best photometric data. As a by-product ofthis analysis, we also compute revised periods and select Blazhkovariables.
| The Metallicity Dependence of the Fourier Components of RR Lyrae Light Curves Is the Oosterhoff-Arp-Preston Period Ratio Effect in Disguise The correlation of particular Fourier components of the light curves ofRR Lyrae variables with metallicity, discovered by Simon and later byKovacs and his coworkers, is shown to have the same explanation as theperiod ratios (period shifts in logP) between RRab Lyrae variables thathave the same colors, amplitudes, and light-curve shapes but differentmetallicities. A purpose of this paper is to demonstrate that the modelthat predicts the period-metallicity relations in the mediatingparameters of colors, amplitudes, and light-curve shapes also explainsthe Simon-Kovacs et al. correlation between period, φ31,and metallicity. The proof is made by demonstrating that the combinationof the first- and third-phase terms in a Fourier decomposition of RRablight curves, called φ31 by Simon & Lee, variesmonotonically across the RR Lyrae instability strip in the same way thatamplitude, color, and rise time vary with period within the strip. Thepremise of the model is that if horizontal branches at the RR Lyraestrip are stacked in luminosity according to the metallicity, then therenecessarily must be a logperiod shift between RR Lyrae stars withdifferent metallicities at the same φ31 values. However,there are exceptions to the model. The two metal-rich globular clustersNGC 6388 and NGC 6441, with anomalously long periods of their RR Lyraestars for their amplitudes, violate the period-metallicity correlationsboth in amplitudes and in φ31 values (for NGC 6441 whereφ31 data exist). The cause must be related to theanomalously bright horizontal branches in these two clusters for theirmetallicities. The effect of luminosity evolution away from the zero-agehorizontal branch, putatively causing noise in the metallicity equation,is discussed. It is clearly seen in the amplitude-period correlationsbut apparently does not exist in the φ31-periodcorrelation in the data for the globular cluster M3 analyzed by Jurcsikand coworkers and by Cacciari and Fusi Pecci, for reasons not presentlyunderstood. Clarification can be expected from study of precisionphotometric data of evolved RR Lyrae stars in globular clusters ofdifferent metallicity when their Fourier components are known.
| Subsystems of RR Lyrae Variable Stars in Our Galaxy We have used published, high-accuracy, ground-based and satelliteproper-motion measurements, a compilation of radial velocities, andphotometric distances to compute the spatial velocities and Galacticorbital elements for 174 RR Lyrae (ab) variable stars in the solarneighborhood. The computed orbital elements and published heavy-elementabundances are used to study relationships between the chemical,spatial, and kinematic characteristics of nearby RR Lyrae variables. Weobserve abrupt changes of the spatial and kinematic characteristics atthe metallicity [Fe/H]≈-0.95 and also when the residual spatialvelocities relative to the LSR cross the critical value V res≈290km/s. This provides evidence that the general population of RR Lyraestars is not uniform and includes at least three subsystems occupyingdifferent volumes in the Galaxy. Based on the agreement between typicalparameters for corresponding subsystems of RR Lyrae stars and globularclusters, we conclude that metal-rich stars and globular clusters belongto a rapidly rotating and fairly flat, thick-disk subsystem with a largenegative vertical metallicity gradient. Objects with larger metaldeficiencies can, in turn, be subdivided into two populations, but usingdifferent criteria for stars and clusters. We suggest that field starswith velocities below the critical value and clusters with extremelyblue horizontal branches form a spherical, slowly rotating subsystem ofthe protodisk halo, which has a common origin with the thick disk; thissubsystem has small but nonzero radial and vertical metallicitygradients. The dimensions of this subsystem, estimated from theapogalactic radii of orbits of field stars, are approximately the same.Field stars displaying more rapid motion and clusters with redderhorizontal branches constitute the spheroidal subsystem of the accretedouter halo, which is approximately a factor of three larger in size thanthe first two subsystems. It has no metallicity gradients; most of itsstars have eccentric orbits, many display retrograde motion in theGalaxy, and their ages are comparatively low, supporting the hypothesisthat the objects in this subsystem had an extragalactic origin.
| Bias Properties of Extragalactic Distance Indicators. XI. Methods to Correct for Observational Selection Bias for RR Lyrae Absolute Magnitudes from Trigonometric Parallaxes Expected from the Full-Sky Astrometric Mapping Explorer Satellite A short history is given of the development of the correction forobservation selection bias inherent in the calibration of absolutemagnitudes using trigonometric parallaxes. The developments have beendue to Eddington, Jeffreys, Trumpler & Weaver, Wallerstein,Ljunggren & Oja, West, Lutz & Kelker, after whom the bias isnamed, Turon Lacarrieu & Crézé, Hanson, Smith, andmany others. As a tutorial to gain an intuitive understanding of severalcomplicated trigonometric bias problems, we study a toy bias model of aparallax catalog that incorporates assumed parallax measuring errors ofvarious severities. The two effects of bias errors on the derivedabsolute magnitudes are (1) the Lutz-Kelker correction itself, whichdepends on the relative parallax error δπ/π and the spatialdistribution, and (2) a Malmquist-like ``incompleteness'' correction ofopposite sign due to various apparent magnitude cutoffs as they areprogressively imposed on the catalog. We calculate the bias propertiesusing simulations involving 3×106 stars of fixedabsolute magnitude using Mv=+0.6 to imitate RR Lyraevariables in the mean. These stars are spread over a spherical volumebounded by a radius 50,000 pc with different spatial densitydistributions. The bias is demonstrated by first using a fixed rmsparallax uncertainty per star of 50 μas and then using a variable rmsaccuracy that ranges from 50 μas at apparent magnitude V=9 to 500μas at V=15 according to the specifications for the Full-SkyAstrometric Mapping Explorer (FAME) satellite to be launched in 2004.The effects of imposing magnitude limits and limits on the``observer's'' error, δπ/π, are displayed. We contrast themethod of calculating mean absolute magnitude directly from theparallaxes where bias corrections are mandatory, with an inverse methodusing maximum likelihood that is free of the Lutz-Kelker bias, althougha Malmquist bias is present. Simulations show the power of the inversemethod. Nevertheless, we recommend reduction of the data using bothmethods. Each must give the same answer if each is freed from systematicerror. Although the maximum likelihood method will, in theory, eliminatemany of the bias problems of the direct method, nevertheless the biascorrections required by the direct method can be determined empiricallyvia Spaenhauer diagrams immediately from the data, as discussed in theearlier papers of this series. Any correlation of the absolute(trigonometric) magnitudes with the (trigonometric) distances is thebias. We discuss the level of accuracy that can be expected in acalibration of RR Lyrae absolute magnitudes from the FAME data over themetallicity range of [Fe/H] from 0 to -2, given the known frequency ofthe local RR Lyrae stars closer than 1.5 kpc. Of course, use will alsobe made of the entire FAME database for the RR Lyrae stars over thecomplete range of distances that can be used to empirically determinethe random and systematic errors from the FAME parallax catalog, usingcorrelations of derived absolute magnitude with distance and position inthe sky. These bias corrections are expected to be much more complicatedthan only a function of apparent magnitude because of variousrestrictions due to orbital constraints on the spacecraft.
| Empirical relations for cluster RR Lyrae stars revisited Our former study on the empirical relations between the Fourierparameters of the light curves of the fundamental mode RR Lyrae starsand their basic stellar parameters has been extended to considerablylarger data sets. The most significant contribution to the absolutemagnitude MV comes from the period P and from the firstFourier amplitude A1, but there are statistically significantcontributions also from additional higher order components, mostimportantly from A3 and in a lesser degree from the Fourierphase varphi51. When different colors are combined inreddening-free quantities, we obtain basically period-luminosity-colorrelations. Due to the log Teff(B-V,log g,[Fe/H]) relationfrom stellar atmosphere models, we would expect some dependence also onvarphi 31. Unfortunately, the data are still not extensiveand accurate enough to decipher clearly the small effect of this Fourierphase. However, with the aid of more accurate multicolor data on fieldvariables, we show that this Fourier phase should be present either inV-I or in B-V or in both. From the standard deviations of the variousregressions, an upper limit can be obtained on the overall inhomogeneityof the reddening in the individual clusters. This yields sigmaE(B-V)<~ 0.012 mag, which also implies an average minimumobservational error of sigmaV >~ 0.018 mag.
| Absolute Magnitudes and Kinematic Parameters of the Subsystem of RR Lyrae Variables The statistical parallax technique is applied to a sample of 262 RRabLyrae variables with published photoelectric photometry, metallicities,and radial velocities and with measured absolute proper motions.Hipparcos, PPM, NPM, and the Four-Million Star Catalog (Volchkov et al.1992) were used as the sources of proper motions; the proper motionsfrom the last three catalogs were reduced to the Hipparcos system. Wedetermine parameters of the velocity distribution for halo [(U_0, V_0,W_0) = (-9 +/- 12, -214 +/- 10, -16 +/- 7) km/s and (sigma_U, sigma_V,sigma_W) = (164 +/- 11, 105 +/- 7, 95 +/- 7) km/s] and thick-disk [(U_0,V_0, W_0) = (-16 +/- 8, -41 +/- 7, -18 +/- 5) km/s and (sigma_U,sigma_V, sigma_W) = (53 +/- 9, 42 +/- 8, 26 +/- 5) km/s] RR Lyrae, aswell as the intensity-averaged absolute magnitude for RR Lyrae of thesepopulations: = 0.77 +/- 0.10 and = +1.11 +/-0.28 for the halo and thick-disk objects, respectively. The metallicitydependence of the absolute magnitude of RR Lyrae is analyzed(=(0.76 +/- 0.12) + (0.26 +/- 0.26) x ([Fe/H] + 1.6) = 1.17 +0.26 x [Fe/H]). Our results are in satisfactory agreement with the_(RR)-[Fe/H] relation from Carney et al. (1992)(_(RR) = 1.01 + 0.15 x [Fe/H]) obtained by Baade-Wesselink'smethod. They provide evidence for a short distance scale: the LMCdistance modulus and the distance to the Galactic center are 18.22 +/-0.11 and 7.4 +/-±0.5 kpc, respectively. The zero point ofthe distance scale and the kinematic parameters of the RR Lyraepopulations are shown to be virtually independent of the source ofabsolute proper motions used and of whether they are reduced to theHipparcos system or not.
| Stars with the Largest Hipparcos Photometric Amplitudes A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.
| Kinematics of Metal-poor Stars in the Galaxy. II. Proper Motions for a Large Nonkinematically Selected Sample We present a revised catalog of 2106 Galactic stars, selected withoutkinematic bias and with available radial velocities, distance estimates,and metal abundances in the range -4.0<=[Fe/H]<=0.0. This updateof the 1995 Beers & Sommer-Larsen catalog includes newly derivedhomogeneous photometric distance estimates, revised radial velocitiesfor a number of stars with recently obtained high-resolution spectra,and refined metallicities for stars originally identified in the HKobjective-prism survey (which account for nearly half of the catalog)based on a recent recalibration. A subset of 1258 stars in this cataloghave available proper motions based on measurements obtained with theHipparcos astrometry satellite or taken from the updated AstrographicCatalogue (second epoch positions from either the Hubble Space TelescopeGuide Star Catalog or the Tycho Catalogue), the Yale/San Juan SouthernProper Motion Catalog 2.0, and the Lick Northern Proper Motion Catalog.Our present catalog includes 388 RR Lyrae variables (182 of which arenewly added), 38 variables of other types, and 1680 nonvariables, withdistances in the range 0.1 to 40 kpc.
| Systematics of RR Lyrae Statistical Parallax. II. Proper Motions and Radial Velocities We investigate whether a misestimate of proper motions or radialvelocities could have been a source of substantial systematic errors inthe statistical parallax determination of the absolute magnitude of RRLyrae stars. In an earlier paper, we showed that the statisticalparallax method is extremely robust and rather insensitive to varioussystematic effects. The main potential problem with this method wouldtherefore arise from systematically bad observational inputs, propermotions, radial velocities, apparent magnitudes, and/or extinctions.Here we focus on the proper motions and radial velocities. We comparethree different catalogs of proper motions: Lick, Hipparcos, and the onecompiled by Wan et al. (WMJ). We find that the WMJ catalog is tooheterogeneous to be a reliable source. We analyze a sample of 165 haloRR Lyrae stars with either Lick or Hipparcos proper motions. For thestars with both Lick and Hipparcos proper motions, we use the weightedmeans of reported values. Various possible biases are investigatedthrough vigorous Monte Carlo simulations, and we evaluate the smallcorrections due to Malmquist bias, anisotropic positions of the stars onthe sky, and non-Gaussian distribution of stellar velocities. The meanRR Lyrae absolute magnitude is M_V = 0.74 +/- 0.12 at the meanmetallicity of the sample, <[Fe/H]> = -1.60, only 0.01 magbrighter than the value obtained in the previous study, which did notincorporate Hipparcos proper motions. To test for systematics in the RRLyrae radial velocities, we analyze a non-kinematically selected sample([Fe/H] <= -1.5) of 103 RR Lyrae stars with Hipparcos and/or Lickproper motions and 724 non-RR Lyrae stars from Beers &Sommer-Larsen. We find M_V = 0.79 +/- 0.12 at <[Fe/H]> = -1.79.Because the radial velocities in this sample are dominated by non-RRLyrae stars, the agreement of the two determinations suggests that thepure RR Lyrae sample is not significantly affected by systematics inradial velocities. If the two determination are combined (taking intoaccount the 0.45 correlation coefficient between them), the net resultis M_V = 0.77 +/- 0.10 at <[Fe/H]> = -1.71. The faint absolutemagnitudes of RR Lyrae stars confirmed by this analysis gives strongsupport to the short distance scale.
| The absolute magnitudes of RR Lyraes from HIPPARCOS parallaxes and proper motions We have used HIPPARCOS proper motions and the method of StatisticalParallax to estimate the absolute magnitude of RR Lyrae stars. Inaddition we used the HIPPARCOS parallax of RR Lyrae itself to determineit's absolute magnitude. These two results are in excellent agreementwith each other and give a zero-point for the RR Lyrae M_v,[Fe/H]relation of 0.77+/-0.15 at [Fe/H]=-1.53. This zero-point is in goodagreement with that obtained recently by several groups usingBaade-Wesselink methods which, averaged over the results from thedifferent groups, gives M_v = 0.73+/-0.14 at [Fe/H]=-1.53. Taking theHIPPARCOS based zero-point and a value of 0.18+/-0.03 for the slope ofthe M_v,[Fe/H] relation from the literature we find firstly, thedistance modulus of the LMC is 18.26+/-0.15 and secondly, the mean ageof the Globular Clusters is 17.4+/-3.0 GYrs. These values are comparedwith recent estimates based on other "standard candles" that have alsobeen calibrated with HIPPARCOS data. It is clear that, in addition toastrophysical problems, there are also problems in the application ofHIPPARCOS data that are not yet fully understood. Table 1, whichcontains the basic data for the RR Lyraes, is available only at CDS. Itmay be retrieved via anonymous FTP at cdsarc.u-strasbg.fr (130.79.128.5)or via the Web at http://cdsweb.u-strasbg.fr/Abstract.html
| Early evolution of the Galactic halo revealed from Hipparcos observations of metal-poor stars The kinematics of 122 red giant and 124 RR Lyrae stars in the solarneighborhood are studied using accurate measurements of their propermotions obtained by the Hipparcos astrometry satellite, combined withtheir published photometric distances, metal abundances, and radialvelocities. A majority of these sample stars have metal abundances of(Fe/H) = -1 or less and thus represent the old stellar populations inthe Galaxy. The halo component, with (Fe/H) = -1.6 or less, ischaracterized by a lack of systemic rotation and a radially elongatedvelocity ellipsoid. About 16 percent of such metal-poor stars have loworbital eccentricities, and we see no evidence of a correlation between(Fe/H) and e. Based on the model for the e-distribution of orbits, weshow that this fraction of low-e stars for (Fe/H) = -1.6 or less isexplained by the halo component alone, without introducing the extradisk component claimed by recent workers. This is also supported by theabsence of a significant change in the e-distribution with height fromthe Galactic plane. In the intermediate-metallicity range, we find thatstars with disklike kinematics have only modest effects on thedistributions of rotational velocities and e for the sample at absolutevalue of z less than 1 kpc. This disk component appears to constituteonly 10 percent for (Fe/H) between -1.6 and -1 and 20 percent for (Fe/H)between -1.4 and -1.
| Computation of the distance moduli of RR Lyrae stars from their light and colour curves. We use B and V data of globular cluster variables to derive a formulafor the distance moduli of RRab stars. The method employs the Fourierdecomposition of the V light curve and the average B-V colour index. Byusing our former result for the V_0_ absolute magnitude, we also obtainan expression for the dereddened colour index. With the aid of the newformulae, the relative distance moduli can be estimated within an errorof <0.03mag. Although we also make an absolute calibration, it iscautioned that this may be more affected by possible systematic errorsoriginating mostly from the Baade-Wesselink magnitudes. On the basis ofthe scatter of the individual distance moduli computed with and withoutreddening correction, it is shown that inhomogeneous reddening plays arole in several clusters. By using our formulae we derive newexpressions for the I_c_ and K absolute magnitudes on a sample of starswhich contains mostly field stars with accurate photometry. As aby-product of this derivation we also give optimum estimations for theselective absorption coefficient R_V_. We show that the K absolutemagnitude contains important contribution also from the Fourierparameters, besides the well known dependence on the period. The I_c_absolute magnitude is superbly correlated with the Fourier parameters,which implies that this colour is a very good candidate for the accurateestimation of the absolute magnitude.
| Structural Properties of Pulsating Star Light Curves Through Fuzzy Divisive Hierarchical Clustering Not Available
| The Absolute Magnitude and Kinematics of RR Lyrae Stars Via Statistical Parallax Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996AJ....112.2110L&db_key=AST
| Determination of [Fe/H] from the light curves of RR Lyrae stars. We present an accurate and robust method for the calculation of [Fe/H]from the light curves of RRab stars. The method introduces aconsiderable improvement relative to our previously published formulae.First of all, it uses an improved and extended data base for the lightcurves and more accurate, very recent iron abundances. Secondly, the newdata base makes it possible to show that the basic relation between[Fe/H] and the Fourier parameters is linear and contains only the periodand one of the Fourier phases, most importantly φ_31_. Last but notleast, we derive interrelations among the Fourier parameters which helpus to filter out peculiar stars where more caution is needed inaccepting the calculated abundance. The applicability of the method isdemonstrated on independent samples of globular cluster stars.Peculiarities encountered in Blazhko variables and in some other casesare also discussed.
| Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue. We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.
| The Metallicities and Kinematics of RR Lyrae Variables.II. Galactic Structure and Formation from Local Stars Abstract image available at:http://adsabs.harvard.edu/abs/1995AJ....110.2288L
| Kinematics of metal-poor stars in the galaxy We discuss the kinematic properties of a sample of 1936 Galactic stars,selected without kinematic bias, and with abundances (Fe/H) is less thanor equal to -0.6. The stars selected for this study all have measuredradial velocities, and the majority have abundances determined fromspectroscopic or narrow-/intermediate-band photometric techniques. Incontrast to previous examinations of the kinematics of the metal-poorstars in the Galaxy, our sample contains large numbers of stars that arelocated at distances in excess of 1 kpc from the Galactic plane. Thus, amuch clearer picture of the nature of the metal-deficient populations inthe Galaxy can now be drawn.
| A new method for the determination of [Fe/H] in RR Lyrae stars. The Fourier parameters of the V light curves of the field RRab stars areused to fit their [Fe/H]. The method is based on the assumption that theobserved light curves depend only on a few physical parameters,including the chemical composition. We give two formulae which estimatethe observed [Fe/H] with an accuracy of 0.23-0.18dex. Each of theseexpressions consists of a second order polynom of 2-4 Fourier parametersand the period. The method is a powerful tool in estimating themetallicity when spectroscopic data are not available.
| The metallicities and kinematics of RR Lyrae variables, 1: New observations of local stars In order to study the structure and formation history of the galaxy, wehave obtained low-to-moderate dispersion spectra of 302 nearby RR Lyraevariables of Bailey type 'ab'. We derived abundances, typically accurateto 0.15-0.20 dex and calibrated to the Zinn & West (1984) globularcluster metallicity scale, from the pseudoequivalent widths of the Ca IIK, H delta, H gamma, and H beta lines. Radial velocities accurate tobetween 2 and 30 km/s were obtained from the spectra and from theliterature. Distances accurate to between 5% and 20% were derived frompublished apparent magnitudes and Burstein & Heiles (1982)reddenings. The metallicity distribution of the RR Lyrae stars peaks at(Fe/H)K approximately equals -1.5, and is narrower than thatof the Ryan & Norris (1991) subdwarfs, as expected since the mostmetal-rich and metal-poor progenitors preferentially appear as stablered and blue horizontal branch stars, rather than as RR Lyrae. Themetal-rich tail of the RR Lyrae distribution extends to(Fe/H)K approximately equals 0, and a qualitative analysis ofthe distribution of distances from the galactic plane shows that thestars in this tail (i.e., (Fe/H)K greater than -1.0) are moreconcentrated to the plane than the more metal-poor stars. The abundancedistribution of the local RR Lyrae stars is in excellent agreement withthe changing abundance distributions of distant RR Lyrae stars as afunction of galactocentric distance, as derived by Suntzeff et al.(1991), who ascribed this change to systematic variation in horizontalbranch morphology (probably age variations) with galactocentricdistance. The abundance distribution of the local RR Lyrae stars alsoagrees well with those of the distant RR Lyrae stars as a function ofdistance from the galactic plane. There is no evidence for an abundancegradient in this direction, suggesting that gaseous dissipation did notplay a major role in the formation of the outer halo.
| Post-main-sequence and POST red giant branch variables with pulsation periods less than one day Post-main-sequence (mass 1 to 3 solar masses) and post-giant branch (0.5to 1 solar mass) pulsators are discussed on the basis of four color andH beta light curves published elsewhere. The post-main-sequencevariables, called ultrashort period cepheid (USPC) (delta Sct), pulsatein the fundamental and first harmonic modes of radial pulsation and, inmany cases, in nonradial modes. The variables for which photometryallows accurate, luminosity estimates and are known to pulsatesimultaneously in the fundamental and first harmonic or in thefundamental mode alone, define a PL relation (MV = -2.80 logP - 0.60, fundamental). It is notable that the slope of this relation isin the range of slopes found for classical cepheids. Accurate Vphotometry is lacking for many of the variables known as 'anomalouscepheids', but the available data divide them into low mass,pseudocepheids (BL Her and W Vir stars) and post-main-sequence USPC(delta Sct) variables. Four USPC in NGC 5053 and six in NGC 6466, forwhich accurate photometry is available, give remarkably consistentmoduli of 16.06 +/- 0.05 and 15.98 +/- 0.08 mag, respectively, for theclusters, in which they are blue stragglers similar to SX Phe inKapteyn's star group. The assumption that the four post-giant branchvariables, called VSPC (RR Lyr), S Ari, SU Dra, and ST Leo in Kapteyn'sstar group and RR Lyr in the Groombridge 1830 group, are physicalmembers of these groups and share their V-velocities, leads to acalibration of the photometry for the derivation of reddening,luminosity, and heavy element abundance of 45 field variables. Theresulting reddenings are consistent with values obtained by othermethods and the metallicities are consistent with the most accuratelyavailable spectroscopic determinations of delta S and of Ca II K. Theluminosities of the bulk of the variables confirm Sandage's (1993)relation between MV and (Fe/H). Four or five of the fieldvariables are probably binary, including BB Vir which Kinman &Carreta (1992) have independently noted as double. The PL relation forUSPC (delta Sct) variables intersects the horizontal branch (HB) near P= 0.3d and at least two field very short period cepheid (VSPC) (RR Lyr)star, FW Lup (0.484 d) and ST Pic (0.486 d) may be first overtonepulsators of the USPC (delta Sct) variety. A dozen field VSPC (RR Lyr)stars populate a (Fe/H), MV relation with the same slope asthe other stars but displaced 0.7 mag toward higher luminosities. Theonly cluster variable found to populate this diplaced relation is No. 9in 47 Tuc, although ST Vir, which may be a member of the Arcturus group,should also be considered. The elevated luminosities are unlikely to becaused by either evolution or errors in the photometric indices. Apossible source of these apparently young VSPC(RR Lyr) variables withhalo metallicity is in second (or third) generation globular clustersformed during an episodic collapse of the galaxy that produced metalpoor stars but in a dynamical situation that hastened the disruption ofthe clusters, currently formed, before the still older globularclusters, created under conditions that have kept them in a moredisruptive free environment.
| The very short period Cepheid (RR Lyr) variables. 2: Light and color curves of variables in the solar vicinity Four color and H beta observations for 43 very short period Cepheids(VSPC, RRLyr) variables have been obtained with the Cerro Tololo andKitt Peak reflectors. The color systems are defined in Eggen (1982).Contemporary, photo-electric V-light curves have been used to establishthe phasing and the resulting periods used to compute the phases for thepresent observations. These phases are then adjusted to fit the V-lightcurves and the resulting periods and adjusted phases are given.
|
Додај нови чланак
Линкови у сродству са темом
Додај нови линк
Чланови следећих група \:
|
Посматрања и Астрометриски подаци
Сазвежђа: | Кентаур |
Ректацензија: | 13h55m14.76s |
Deклинација: | -43°14'24.8" |
Apparent магнитуда: | 11.162 |
Proper motion RA: | 6.3 |
Proper motion Dec: | -27.5 |
B-T magnitude: | 11.492 |
V-T magnitude: | 11.19 |
Каталог и designations:
|