Tartalom
Képek
Kép feltöltése
DSS Images Other Images
Kapcsolódó cikkek
Unveiling the nature of IGR J16283-4838 Context. One of the most striking discoveries of the INTEGRALobservatory is the existence of a previously unknown population of X-raysources in the inner arms of the Galaxy. The investigations of theoptical/NIR counterparts of some of them have provided evidence thatthey are highly absorbed high mass X-ray binaries hosting supergiants. Aims: We aim to identify the optical/NIR counterpart of one ofthe newly discovered INTEGRAL sources, IGR J16283-4838, and determinethe nature of this system. Methods: We present optical and NIRobservations of the field of IGR J16283-4838, and use the astrometry andphotometry of the sources within it to identify its counterpart. Weobtain its NIR spectrum, and its optical/NIR spectral energydistribution by means of broadband photometry. We search for theintrinsic polarization of its light, and its short and long-termphotometric variability. Results: We demonstrate that this sourceis a highly absorbed HMXB located beyond the Galactic center, and thatit may be surrounded by a variable circumstellar medium.Based on observations collected at the European Southern Observatory,Chile, under proposal ESO 075.D-0634.
| Coudé-feed stellar spectral library - atmospheric parameters Context. Empirical libraries of stellar spectra play an important rolein different fields. For example, they are used as reference for theautomatic determination of atmospheric parameters, or for buildingsynthetic stellar populations to study galaxies. The CFLIB(Coudé-feed library, Indo-US) database is at present one of themost complete libraries, in terms of its coverage of the atmosphericparameters space (T{eff}, log g and [Fe/H]) and wavelengthcoverage 3460-9464 Å at a resolution of 1 Å FWHM. Althoughthe atmospheric parameters of most of the stars were determined fromdetailed analyses of high-resolution spectra, for nearly 300 of the 1273stars of the library at least one of the three parameters is missing.For the others, the measurements, compiled from the literature, areinhomogeneous. Aims: In this paper, we re-determine theatmospheric parameters, directly using the CFLIB spectra, and comparethem to the previous studies. Methods: We use the ULySS programto derive the atmospheric parameters, using the ELODIE library as areference. Results: Based on comparisons with several previousstudies we conclude that our determinations are unbiased. For the 958 F,G, and K type stars the precision on T{eff}, log g, and[Fe/H] is respectively 43 K, 0.13 dex and 0.05 dex. For the 53 M starsthey are 82 K, 0.22 dex and 0.28 dex. And for the 260 OBA type stars therelative precision on T{eff} is 5.1%, and on log g, and[Fe/H] the precision is respectively 0.19 dex and 0.16 dex. Theseparameters will be used to re-calibrate the CFLIB fluxes and to producesynthetic spectra of stellar populations.Tables 2 and 3 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/525/A71
| The copper and zinc abundances in stars of galactic sub-structures We have determined abundances of copper, zinc, sodium, and aluminum inthe atmospheres of 172 F, G, and K dwarf stars (-1.0 < [Fe/H] <0.3) belonging to the Galaxy's thin and thick disks and to the Herculesmoving group. Our observations were performed with the ELODIEéchelle spectrometer on the 1.93-m telescope of the HauteProvence Observatory, with a resolving power of R = 42 000 andsignal-to-noise ratio S/N > 100. The Na, Al, Cu, and Zn abundanceswere derived in an LTE approximation; the synthetic spectrum for thecopper lines was calculated taking into account super-fine structure ofthe lines. We analyzed the abundances of these elements as a function ofmetallicity [Fe/H] for stars of the thin and thick disks of the Galaxyand the Hercules moving group. The Cu abundances and their trends withmetallicity are essentially the same in the three studiedsub-structures. The mean Al and Zn abundances for stars of the thin andthick disks differ significantly.
| The ability of intermediate-band Strömgren photometry to correctly identify dwarf, subgiant, and giant stars and provide stellar metallicities and surface gravities Context. Several large scale photometric and spectroscopic surveys arebeing undertaken to provide a more detailed picture of the Milky Way.Given the necessity of generalisation in the determination of, e.g.,stellar parameters when tens and hundred of thousands of stars areconsidered it remains important to provide independent, detailed studiesto verify the methods used in the surveys. Aims: Our first aim isto critically evaluate available calibrations for deriving [M/H] fromStrömgren photometry. Secondly, we develop the standard sequencesfor dwarf stars to reflect their inherent metallicity dependence.Finally, we test how well metallicities derived from ugriz photometryreproduce metallicities derived from the well-tested system ofStrömgren photometry. Methods: We evaluate availablemetallicity calibrations based on Strömgren uvby photometry fordwarf stars using a catalogue of stars with both uvby photometry andspectroscopically determined iron abundances ([Fe/H]). The catalogue wascreated for this project. Using this catalogue, we also evaluateavailable calibrations that determine log g. A larger catalogue, inwhich metallicity is determined directly from uvby photometry, is usedto trace metallicity-dependent standard sequences for dwarf stars. Wealso perform comparisons, for both dwarf and giant stars, ofmetallicities derived from ugriz photometry with metallicities derivedfrom Strömgren photometry. Results: We provide a homogenisedcatalogue of 451 dwarf stars with 0.3 < (b-y)0 < 1.0.All stars in the catalogue have uvby photometry and [Fe/H] determinedfrom spectra with high resolution and high signal-to-noise ratios (S/N).Using this catalogue, we test how well various photometric metallicitycalibrations reproduce the spectroscopically determined [Fe/H]. Usingthe preferred metallicity calibration for dwarf stars, we derive newstandard sequences in the c1,0 versus (b-y)0 planeand in the c1,0 versus (v-y)0 plane for dwarfstars with 0.40 < (b-y)0 < 0.95 and 1.10 <(v-y)0 < 2.38. Conclusions: We recommend thecalibrations of Ramírez & Meléndez (2005) in derivingmetallicities from Strömgren photometry and find that intermediateband photometry, such as Strömgren photometry, more accurately thanbroad band photometry reproduces spectroscopically determined [Fe/H].Strömgren photometry is also better at differentiating betweendwarf and giant stars. We conclude that additional investigations of thedifferences between metallicities derived from ugriz photometry andintermediate-band photometry, such as Strömgren photometry, arerequired.Appendix A is only available in electronic form at http://www.aanda.org, Appendix B isavailable in electronic form at http://www.aanda.org and at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/521/A40
| Spectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo-Neptunes To understand the formation and evolution of solar-type stars in thesolar neighborhood, we need to measure their stellar parameters to highaccuracy. We present a catalogue of accurate stellar parameters for 451stars that represent the HARPS Guaranteed Time Observations (GTO)“high precision” sample. Spectroscopic stellar parameterswere measured using high signal-to-noise (S/N) spectra acquired with theHARPS spectrograph. The spectroscopic analysis was completed assumingLTE with a grid of Kurucz atmosphere models and the recent ARES code formeasuring line equivalent widths. We show that our results agree wellwith those ones presented in the literature (for stars in common). Wepresent a useful calibration for the effective temperature as a functionof the index color B-V and [Fe/H]. We use our results to study themetallicity-planet correlation, namely for very low mass planets. Theresults presented here suggest that in contrast to their joviancouterparts, neptune-like planets do not form preferentially aroundmetal-rich stars. The ratio of jupiter-to-neptunes is also an increasingfunction of stellar metallicity. These results are discussed in thecontext of the core-accretion model for planet formation.Based on observations collected at La Silla Observatory, ESO, Chile,with the HARPS spectrograph at the 3.6-m telescope (072.C-0488(E)). FullTables 1 and 3 are only available in electronic form at the CDS vianonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/487/373
| The Radial Velocity Experiment (rave): Second Data Release We present the second data release of the Radial Velocity Experiment(RAVE), an ambitious spectroscopic survey to measure radial velocitiesand stellar atmosphere parameters (temperature, metallicity, surfacegravity, and rotational velocity) of up to one million stars using the 6dF multi-object spectrograph on the 1.2 m UK Schmidt Telescope of theAnglo-Australian Observatory (AAO). The RAVE program started in 2003,obtaining medium resolution spectra (median R = 7500) in the Ca-tripletregion (8410-8795 Å) for southern hemisphere stars drawn from theTycho-2 and SuperCOSMOS catalogues, in the magnitude range 9 < I <12. Following the first data release, the current release doubles thesample of published radial velocities, now containing 51,829 radialvelocities for 49,327 individual stars observed on 141 nights between2003 April 11 and 2005 March 31. Comparison with external data setsshows that the new data collected since 2004 April 3 show a standarddeviation of 1.3 km s–1, about twice as good as for thefirst data release. For the first time, this data release containsvalues of stellar parameters from 22,407 spectra of 21,121 individualstars. They were derived by a penalized χ2 method usingan extensive grid of synthetic spectra calculated from the latestversion of Kurucz stellar atmosphere models. From comparison withexternal data sets, our conservative estimates of errors of the stellarparameters for a spectrum with an average signal-to-noise ratio (S/N) of~40 are 400 K in temperature, 0.5 dex in gravity, and 0.2 dex inmetallicity. We note however that, for all three stellar parameters, theinternal errors estimated from repeat RAVE observations of 855 stars areat least a factor 2 smaller. We demonstrate that the results show nosystematic offsets if compared to values derived from photometry orcomplementary spectroscopic analyses. The data release includes propermotions from Starnet2, Tycho-2, and UCAC2 catalogs and photometricmeasurements from Tycho-2 USNO-B, DENIS, and 2MASS. The data release canbe accessed via the RAVE Web site: http://www.rave-survey.org andthrough CDS.
| Automated classification of ELODIE stellar spectral library using probabilistic artificial neural networks A Probabilistic Neural Network model has been used for automatedclassification of ELODIE stellar spectral library consisting of about2000 spectra into 158 known spectro-luminosity classes. The full spectrawith 561 flux bins and a PCA reduced set of 57, 26 and 16 componentshave been used for the training and test sessions. The results show aspectral type classification accuracy of 3.2 sub-spectral type andluminosity class accuracy of 2.7 for the full spectra and an accuracy of3.1 and 2.6 respectively with the PCA set. This technique will be usefulfor future upcoming large databases and their rapid classification.
| Vertical distribution of Galactic disk stars. IV. AMR and AVR from clump giants We present the parameters of 891 stars, mostly clump giants, includingatmospheric parameters, distances, absolute magnitudes, spatialvelocities, galactic orbits and ages. One part of this sample consistsof local giants, within 100 pc, with atmospheric parameters eitherestimated from our spectroscopic observations at high resolution andhigh signal-to-noise ratio, or retrieved from the literature. The otherpart of the sample includes 523 distant stars, spanning distances up to1 kpc in the direction of the North Galactic Pole, for which we haveestimated atmospheric parameters from high resolution but lowsignal-to-noise Echelle spectra. This new sample is kinematicallyunbiased, with well-defined boundaries in magnitude and colours. Werevisit the basic properties of the Galactic thin disk as traced byclump giants. We find the metallicity distribution to be different fromthat of dwarfs, with fewer metal-rich stars. We find evidence for avertical metallicity gradient of -0.31 dex kpc-1 and for atransition at ~4-5 Gyr in both the metallicity and velocities. Theage-metallicity relation (AMR), which exhibits a very low dispersion,increases smoothly from 10 to 4 Gyr, with a steeper increase for youngerstars. The age-velocity relation (AVR) is characterized by thesaturation of the V and W dispersions at 5 Gyr, and continuous heatingin U.
| Population Synthesis in the Blue. IV. Accurate Model Predictions for Lick Indices and UBV Colors in Single Stellar Populations We present a new set of model predictions for 16 Lick absorption lineindices from Hδ through Fe5335 and UBV colors for single stellarpopulations with ages ranging between 1 and 15 Gyr, [Fe/H] ranging from-1.3 to +0.3, and variable abundance ratios. The models are based onaccurate stellar parameters for the Jones library stars and a new set offitting functions describing the behavior of line indices as a functionof effective temperature, surface gravity, and iron abundance. Theabundances of several key elements in the library stars have beenobtained from the literature in order to characterize the abundancepattern of the stellar library, thus allowing us to produce modelpredictions for any set of abundance ratios desired. We develop a methodto estimate mean ages and abundances of iron, carbon, nitrogen,magnesium, and calcium that explores the sensitivity of the variousindices modeled to those parameters. The models are compared to high-S/Ndata for Galactic clusters spanning the range of ages, metallicities,and abundance patterns of interest. Essentially all line indices arematched when the known cluster parameters are adopted as input.Comparing the models to high-quality data for galaxies in the nearbyuniverse, we reproduce previous results regarding the enhancement oflight elements and the spread in the mean luminosity-weighted ages ofearly-type galaxies. When the results from the analysis of blue and redindices are contrasted, we find good consistency in the [Fe/H] that isinferred from different Fe indices. Applying our method to estimate meanages and abundances from stacked SDSS spectra of early-type galaxiesbrighter than L*, we find mean luminosity-weighed ages of theorder of ~8 Gyr and iron abundances slightly below solar. Abundanceratios, [X/Fe], tend to be higher than solar and are positivelycorrelated with galaxy luminosity. Of all elements, nitrogen is the morestrongly correlated with galaxy luminosity, which seems to indicatesecondary nitrogen enrichment. If that interpretation is correct, thisresult may impose a lower limit of 50-200 Myr to the timescale of starformation in early-type galaxies. Unlike clusters, galaxies show asystematic effect whereby higher order, bluer, Balmer lines yieldyounger ages than Hβ. This age discrepancy is stronger for lowerluminosity galaxies. We examine four possible scenarios to explain thistrend. Contamination of the bluer indices by a metal-poor stellarpopulation with a blue horizontal branch cannot account for the data.Blue stragglers and abundance-ratio effects cannot be ruled out, as theycan potentially satisfy the data, even though this can only be achievedby resorting to extreme conditions, such as extremely high [O/Fe] orspecific blue-straggler frequencies. The most likely explanation is thepresence of small amounts of a young/intermediate-age stellar populationcomponent. We simulate this effect by producing two-component models andshow that they provide a reasonably good match to the data when the massfraction of the young component is typically a few percent. Ifconfirmed, this result implies star formation has been extended inearly-type galaxies, and more so in less massive galaxies, which seemsto lend support to the ``downsizing'' scenario. Moreover, it impliesthat stellar population synthesis models are capable of constraining notonly the mean ages of stellar populations in galaxies, but also theirage spread.
| High-Dispersion Optical Spectra of Nearby Stars Younger Than the Sun We present high-dispersion (R~16,000) optical (3900-8700 Å)spectra of 390 stars obtained with the Palomar 60 inch telescope. Themajority of stars observed are part of the Spitzer Legacy ScienceProgram ``The Formation and Evolution of Planetary Systems.'' Throughdetailed analysis we determine stellar properties for this sample,including radial and rotational velocities, Li I λ6708 andHα equivalent widths, the chromospheric activity indexR'HK, and temperature- and gravity-sensitive lineratios. Several spectroscopic binaries are also identified. From ourtabulations, we illustrate basic age- and rotation-related correlationsamong measured indices. One novel result is that Ca II chromosphericemission appears to saturate at vsini values above ~30 kms-1, similar to the well-established saturation of X-raysthat originate in the spatially separate coronal region.
| Fundamental Parameters and Elemental Abundances of 160 F-G-K Stars Based on OAO Spectrum Database The properties of 160 F, G, and K disk dwarfs/subgiants (including 27planet-host stars) mostly within ?0.6 ? [Fe/H] ? +0.4,the Okayama Astrophysical Observatory spectrum collection of which hadbeen made open to the public recently, were extensively investigatedwith particular attention to determining (1) the mass and the age withthe help of theoretical stellar evolution calculations, (2) thekinematic parameters of orbital motions in the Galaxy, and (3) theabundances of 15 elements (Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co,Ni, Cu, and Zn) by analyzing the spectra in this database. The resultingcharacteristics are discussed in terms of several relevant topics ofinterest, such as a validity check for assuming LTE, the [X/Fe] vs.[Fe/H] diagram containing information on the chemical evolution of theGalactic disk, the age-metallicity-kinematics relation, and thedifference/similarity between stars with and without planets.
| NGC 5011C: An Overlooked Dwarf Galaxy in the Centaurus A Group A critical study of the properties of groups of galaxies can be doneonly once a complete census of group members is available. Despiteextensive surveys, even nearby groups can lead to surprises. Indeed, wereport the discovery of a previously unnoticed member of the Centaurus AGroup, NGC 5011C. While the galaxy is a well-known stellar system listedwith a NGC number, its true identity has remained hidden because ofcoordinate confusion and wrong redshifts in the literature. NGC 5011Cattracted our attention since, at a putative distance of 45.3 Mpc, itwould be a peculiar object with a very low surface brightness typical ofa dwarf galaxy and, at the same time, a size typical of an early-typespiral or S0 galaxy. To confirm or reject this peculiarity, ourimmediate objective was to have the first reliable measurement of itsrecession velocity. The observations were carried out with EFOSC2 at the3.6 m European Southern Observatory (ESO) telescope, and the spectrawere obtained with the instrument in long-slit mode. The redshifts ofboth NGC 5011C and its neighbor NGC 5011B were computed bycross-correlating their spectra with that of a radial velocity standardstar. We found that NGC 5011C indeed has a low redshift ofvodot = 647 ± 96 km s-1 and thus is anearby dwarf galaxy rather than a member of the distant Centauruscluster, as believed for the past 23 years. Rough distance estimatesbased on photometric parameters also favor this scenario. As aby-product of our study we update the redshift for NGC 5011B tovodot = 3227 ± 50 km s-1. Applyingpopulation synthesis techniques, we find that NGC 5011B has aluminosity-weighted age of 4 ± 1 Gyr and a solar metallicity, andthat the luminosity-weighted age and metallicity of NGC 5011C are 0.9± 0.1 Gyr and 1/5 solar. Finally, we estimate a stellar mass ofNGC 5011C comparable to that of dwarf spheroidal galaxies in the LocalGroup.Based on observations made with European Southern Observatory telescopesat the La Silla Observatory.
| Structure and Evolution of Nearby Stars with Planets. II. Physical Properties of ~1000 Cool Stars from the SPOCS Catalog We derive detailed theoretical models for 1074 nearby stars from theSPOCS (Spectroscopic Properties of Cool Stars) Catalog. The Californiaand Carnegie Planet Search has obtained high-quality (R~=70,000-90,000,S/N~=300-500) echelle spectra of over 1000 nearby stars taken with theHamilton spectrograph at Lick Observatory, the HIRES spectrograph atKeck, and UCLES at the Anglo Australian Observatory. A uniform analysisof the high-resolution spectra has yielded precise stellar parameters(Teff, logg, vsini, [M/H], and individual elementalabundances for Fe, Ni, Si, Na, and Ti), enabling systematic erroranalyses and accurate theoretical stellar modeling. We have created alarge database of theoretical stellar evolution tracks using the YaleStellar Evolution Code (YREC) to match the observed parameters of theSPOCS stars. Our very dense grids of evolutionary tracks eliminate theneed for interpolation between stellar evolutionary tracks and allowprecise determinations of physical stellar parameters (mass, age,radius, size and mass of the convective zone, surface gravity, etc.).Combining our stellar models with the observed stellar atmosphericparameters and uncertainties, we compute the likelihood for each set ofstellar model parameters separated by uniform time steps along thestellar evolutionary tracks. The computed likelihoods are used for aBayesian analysis to derive posterior probability distribution functionsfor the physical stellar parameters of interest. We provide a catalog ofphysical parameters for 1074 stars that are based on a uniform set ofhigh-quality spectral observations, a uniform spectral reductionprocedure, and a uniform set of stellar evolutionary models. We explorethis catalog for various possible correlations between stellar andplanetary properties, which may help constrain the formation anddynamical histories of other planetary systems.
| Medium-resolution Isaac Newton Telescope library of empirical spectra - II. The stellar atmospheric parameters We present a homogeneous set of stellar atmospheric parameters(Teff, logg, [Fe/H]) for MILES, a new spectral stellarlibrary covering the range λλ 3525-7500Å at2.3Å (FWHM) spectral resolution. The library consists of 985 starsspanning a large range in atmospheric parameters, from super-metal-rich,cool stars to hot, metal-poor stars. The spectral resolution, spectraltype coverage and number of stars represent a substantial improvementover previous libraries used in population synthesis models. Theatmospheric parameters that we present here are the result of aprevious, extensive compilation from the literature. In order toconstruct a homogeneous data set of atmospheric parameters we have takenthe sample of stars of Soubiran, Katz & Cayrel, which has very welldetermined fundamental parameters, as the standard reference system forour field stars, and have calibrated and bootstrapped the data fromother papers against it. The atmospheric parameters for our clusterstars have also been revised and updated according to recent metallicityscales, colour-temperature relations and improved set of isochrones.
| Pulkovo compilation of radial velocities for 35495 stars in a common system. Not Available
| Spectroscopic parameters for a sample of metal-rich solar-type stars Aims.To date, metallicity is the only parameter of a star that appearsto clearly correlate with the presence of planets and their properties.To check for new correlations between stars and the existence of anorbiting planet, we determine accurate stellar parameters for severalmetal-rich solar-type stars. The purpose is to fill the gap of thecomparison sample presented in previous works in the high metal-contentregime. Methods: .The stellar parameters were determined using anLTE analysis based on equivalent widths (EW) of iron lines and byimposing excitation and ionization equilibrium. We also present a firststep in determining these stellar parameters in an automatic manner byusing the code DAOSPEC for the EW determination. Results:.Accurate stellar parameters and metallicities are obtained for oursample composed of 64 high metal-content stars not known to harbor anyplanet. This sample will in the future give us the possibility of betterexploring the existence of differences in the chemical abundancesbetween planet-host stars and stars without known planets in themetal-rich domain. We also report stellar parameters for some recentlydiscovered planet-host stars. Finally, we present an empiricalcalibration for DAOSPEC based on the comparison between its EWmeasurements and the standard "hand made" measurements for the FEROSsample presented in this paper.
| Medium-resolution Isaac Newton Telescope library of empirical spectra A new stellar library developed for stellar population synthesismodelling is presented. The library consists of 985 stars spanning alarge range in atmospheric parameters. The spectra were obtained at the2.5-m Isaac Newton Telescope and cover the range λλ3525-7500 Å at 2.3 Å (full width at half-maximum) spectralresolution. The spectral resolution, spectral-type coverage,flux-calibration accuracy and number of stars represent a substantialimprovement over previous libraries used in population-synthesis models.
| The New HiVIS Spectropolarimeter and Spectropolarimetric Calibration of the AEOS Telescope We have designed, built, and calibrated a new spectropolarimeter for theHiVIS spectrograph (R ~ 12,000-49,000) on the Advanced Electro-OpticalSystem (AEOS) telescope. We have also conducted a polarizationcalibration of the telescope and instrument. In this paper, we introducethe design and use of the spectropolarimeter, in addition to a newdata-reduction package we have developed, and then discuss thepolarization calibration of the spectropolarimeter and the AEOStelescope. We used observations of unpolarized standard stars at manypointings to measure the telescope-induced polarization and compare itwith a Zemax model. The telescope induces polarization of 1%-6%, with astrong variation with wavelength and pointing, consistent with theexpected altitude and azimuth variation. We then used scattered sunlightas a linearly polarized source to measure the telescope'sspectropolarimetric response to linearly polarized light. Finally, wemade an all-sky map of the telescope's polarization response tocalibrate future spectropolarimetry.
| Dwarfs in the Local Region We present lithium, carbon, and oxygen abundance data for a sample ofnearby dwarfs-a total of 216 stars-including samples within 15 pc of theSun, as well as a sample of local close giant planet (CGP) hosts (55stars) and comparison stars. The spectroscopic data for this work have aresolution of R~60,000, a signal-to-noise ratio >150, and spectralcoverage from 475 to 685 nm. We have redetermined parameters and derivedadditional abundances (Z>10) for the CGP host and comparison samples.From our abundances for elements with Z>6 we determine the meanabundance of all elements in the CGP hosts to range from 0.1 to 0.2 dexhigher than nonhosts. However, when relative abundances ([x/Fe]) areconsidered we detect no differences in the samples. We find nodifference in the lithium contents of the hosts versus the nonhosts. Theplanet hosts appear to be the metal-rich extension of local regionabundances, and overall trends in the abundances are dominated byGalactic chemical evolution. A consideration of the kinematics of thesample shows that the planet hosts are spread through velocity space;they are not exclusively stars of the thin disk.
| Synthetic Lick Indices and Detection of α-enhanced Stars. III. F, G, and K Stars with [Fe/H] > 0.00 A sample of 119 F, G, and K solar neighborhood stars, selected under thecondition [Fe/H]>0.00, is investigated in order to detect which ofthem, if any, present α-enhanced characteristics. According to thekinematics, the sample represents stars of the thin-disk component ofthe Galaxy. The search of α-enhanced characteristics is performedby adopting an already tested procedure that does not require previousknowledge of the stellar main atmospheric parameters. The analysis isbased on the comparison of spectral indices in the Lick IDS system,coming from different observational data sets, with synthetic onescomputed with solar-scaled abundances and with α-elementenhancement. The main result of the analysis is the extreme paucity(likely just one in 119) of α-enhanced stars in our sample, thussuggesting [α/Fe]=0.0 for thin-disk stars with [Fe/H]>0.00.This result, which is in agreement with the standard evolutionarypicture of the disk of the Galaxy, is compared with recent results fromhigh-resolution analysis reported in the literature. The role of theatmospheric parameter assumptions in the analysis of high-resolutionspectroscopic data is discussed, and a possible explanation ofdiscrepant results about α-enhancement for stars with[Fe/H]>0.00 is presented.
| A New Definition for the Ca4227 Feature: Is Calcium Really Underabundant in Early-Type Galaxies? We have investigated the abundance of calcium in early-type galaxies bymeasuring the strength of the Ca I λ4227 absorption line in theirintegrated spectra. The database used is the large sample of early-typegalaxy integrated spectra in Caldwell and coworkers. We have measured Caabundances from the Ca I λ4227 feature both by using the LickCa4227 index and by defining a new index, Ca4227r, thatavoids the CN4216 molecular band in the continuum on the blueward sideof the line. With the new index definition we measure Ca abundances thatare systematically ~0.3 dex higher than with the Lick Ca4227 index. Theresult is that with the new index definition we obtain higher [Ca/Fe]abundances in early-type galaxies, which are more consistent with theirwell-known [Mg/Fe] overabundances. Hence, we suggest that Ca might beslightly enhanced, relative to Fe, in early-type galaxies.
| Kinematics, ages and metallicities for F- and G-type stars in the solar neighbourhood A new metallicity distribution and an age-metallicity relation arepresented for 437 nearby F and G turn-off and sub-giant stars selectedfrom radial velocity data of Nidever et al. Photometric metallicitiesare derived from uvby- Hβ photometry, and the stellar ages from theisochrones of Bergbusch & VandenBerg as transformed to uvbyphotometry using the methods of Clem et al.The X (stellar population) criterion of Schuster et al., which combinesboth kinematic and metallicity information, provides 22 thick-discstars. σW= 32 +/- 5 km s-1,= 154 +/- 6 km s-1 and<[M/H]>=-0.55 +/- 0.03 dex for these thick-disc stars, which is inagreement with values from previous studies of the thick disc.α-element abundances which are available for some of thesethick-disc stars show the typical α-element signatures of thethick disc, supporting the classification procedure based on the Xcriterion.Both the scatter in metallicity at a given age and the presence of old,metal-rich stars in the age-metallicity relation make it difficult todecide whether or not an age-metallicity relation exists for the olderthin-disc stars. For ages greater than 3 Gyr, our results agree with theother recent studies that there is almost no correlation between age andmetallicity, Δ([M/Fe])/Δ(age) =-0.01 +/- 0.005 dexGyr-1. For the 22 thick-disc stars there is a range in agesof 7-8 Gyr, but again almost no correlation between age and metallicity.For the subset of main-sequence stars with extra-solar planets, theage-metallicity relation is very similar to that of the total sample,very flat, the main difference being that these stars are mostlymetal-rich, [M/H]>~-0.2 dex. However, two of these stars have[M/H]~-0.6 dex and have been classified as thick-disc stars. As for thetotal sample, the range in ages for these stars with extra-solarplanetary systems is considerable with a nearly uniform distributionover 3 <~ age <~ 13 Gyr.
| Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.
| Abundance trends in kinematical groups of the Milky Way's disk We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.
| The Planet-Metallicity Correlation We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.
| Lithium Abundances of F-, G-, and K-Type Stars: Profile-Fitting Analysis of the Li I 6708 Doublet An extensive profile-fitting analysis was performed for the Li(+Fe)6707-6708Å feature of nearby 160 F-K dwarfs/subgiants (including27 planet-host stars) in the Galactic disk ( 7000 K ≳Teff ≳ 5000 K, -1 ≲ [Fe/H] ≲ +0.4), in orderto establish the photospheric lithium abundances of these stars. Thenon-LTE effect (though quantitatively insignificant) was taken intoaccount based on our statistical equilibrium calculations, which werecarried out on an adequate grid of models. Our results confirmed most ofthe interesting observational characteristics revealed by recentlypublished studies, such as the bimodal distribution of the Li abundancesfor stars at Teff ≳ 6000 K, the satisfactory agreementof the upper envelope of the A(Li) vs. [Fe/H] distribution with thetheoretical models, the existence of a positive correlation betweenA(Li) and the stellar mass, and the tendency of lower lithium abundancesof planet-host stars (as compared to stars without planets) at thenarrow ``transition'' region of 5900 K ≳ Teff ≳5800 K. The solar Li abundance derived from this analysis is 0.92 (H =12.00), which is by 0.24dex lower than the widely referenced standardvalue of 1.16.
| Spectroscopic Study on the Atmospheric Parameters of Nearby F--K Dwarfs and Subgiants Based on a collection of high-dispersion spectra obtained at OkayamaAstrophysical Observatory, the atmospheric parameters (Teff,log g, vt, and [Fe/H]) of 160 mid-F through early-K starswere extensively determined by the spectroscopic method using theequivalent widths of Fe I and Fe II lines along with the numericaltechnique of Takeda et al. (2002, PASJ, 54, 451). The results arecomprehensively discussed and compared with the parameter values derivedby different approaches (e.g., photometric colors, theoreticalevolutionary tracks, Hipparcos parallaxes, etc.) as well as with thepublished values found in various literature. It has been confirmed thatour purely spectroscopic approach yields fairly reliable and consistentresults.
| High-Dispersion Spectra Collection of Nearby F--K Stars at Okayama Astrophysical Observatory: A Basis for Spectroscopic Abundance Standards Towards constructing a system of high-dispersion spectroscopic standardstars with well-established abundances, so that adequate reference starsof similar properties may be found for precise differential abundancestudies of any near-solar type stars, we have collected high-resolution(R 70000) echelle spectra for 160 F-K dwarfs and subgiants of thesolar neighborhood in three wavelength regions (5000-6200Å,5800-7000Å, and 7600-8800Å) at Okayama AstrophysicalObservatory. This spectra database is open to the public.
| ARIES imaging polarimeter. An Imaging Polarimeter has been fabricated for use with liquid- N2cooled CCD camera and is designed to suit 104-cm Sampurnanand telescopewith an f/13 focus at Aryabhatta Research Institute of ObservationalSciences (ARIES), Naini Tal. The instrument measures the linearpolarisation in broad B, V and R band and has a field of view ~ 20' x20'. We are presenting here some observations regarding the polarisationof some polarised as well as unpolarised stars with a view to show theperformance of our polarimeter.
| Stellar Chemical Signatures and Hierarchical Galaxy Formation To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.
|
Új cikk hozzáadása
Kapcsolódó hivatkozások
- - (nincs kapcsolódó hivatkozás) -
Új link hozzáadása
Besorolás csoportokba:
|
Pozíciós és asztrometriai adatok
Csillagkép: | Szűz |
Rektaszcenzió: | 14h18m00.73s |
Deklináció: | -07°32'32.6" |
Vizuális fényesség: | 6.479 |
RA sajátmozgás: | 265.7 |
Dec sajátmozgás: | -234 |
B-T magnitude: | 7.375 |
V-T magnitude: | 6.553 |
Katalógusok és elnevezések:
|