Főoldal     Alapinformációk     To Survive in the Universe    
Inhabited Sky
    News@Sky     Asztrofotók     Kollekció     Fórum     Blog New!     GYIK     Sajtó     Bejelentkezés  

TYC 5199-929-1


Tartalom

Képek

Kép feltöltése

DSS Images   Other Images


Kapcsolódó cikkek

Chemical Abundances of the Milky Way Thick Disk and Stellar Halo. I. Implications of [?/Fe] for Star Formation Histories in Their Progenitors
We present the abundance analysis of 97 nearby metal-poor (-3.3< [Fe/H] <-0.5) stars having kinematic characteristics ofthe Milky Way (MW) thick disk and inner and outer stellar halos. Thehigh-resolution, high-signal-to-noise optical spectra for the samplestars have been obtained with the High Dispersion Spectrograph mountedon the Subaru Telescope. Abundances of Fe, Mg, Si, Ca, and Ti have beenderived using a one-dimensional LTE abundance analysis code with KuruczNEWODF model atmospheres. By assigning membership of the sample stars tothe thick disk, inner halo, or outer halo components based on theirorbital parameters, we examine abundance ratios as a function of [Fe/H]and kinematics for the three subsamples in wide metallicity and orbitalparameter ranges. We show that, in the metallicity range of -1.5< [Fe/H] <=-0.5, the thick disk stars show constantly highmean [Mg/Fe] and [Si/Fe] ratios with small scatter. In contrast, theinner and the outer halo stars show lower mean values of these abundanceratios with larger scatter. The [Mg/Fe], [Si/Fe], and [Ca/Fe] for theinner and the outer halo stars also show weak decreasing trends with[Fe/H] in the range [Fe/H] >-2. These results favor thescenarios that the MW thick disk formed through rapid chemicalenrichment primarily through Type II supernovae of massive stars, whilethe stellar halo has formed at least in part via accretion of progenitorstellar systems having been chemically enriched with differenttimescales.

Testing a Predictive Theoretical Model for the Mass Loss Rates of Cool Stars
The basic mechanisms responsible for producing winds from cool,late-type stars are still largely unknown. We take inspiration fromrecent progress in understanding solar wind acceleration to develop aphysically motivated model of the time-steady mass loss rates of coolmain-sequence stars and evolved giants. This model follows the energyflux of magnetohydrodynamic turbulence from a subsurface convection zoneto its eventual dissipation and escape through open magnetic flux tubes.We show how Alfvén waves and turbulence can produce winds ineither a hot corona or a cool extended chromosphere, and we specify theconditions that determine whether or not coronal heating occurs. Thesemodels do not utilize arbitrary normalization factors, but insteadpredict the mass loss rate directly from a star's fundamentalproperties. We take account of stellar magnetic activity by extendingstandard age-activity-rotation indicators to include the evolution ofthe filling factor of strong photospheric magnetic fields. We comparedthe predicted mass loss rates with observed values for 47 stars andfound significantly better agreement than was obtained from the popularscaling laws of Reimers, Schröder, and Cuntz. The algorithm used tocompute cool-star mass loss rates is provided as a self-contained andefficient computer code. We anticipate that the results from this kindof model can be incorporated straightforwardly into stellar evolutioncalculations and population synthesis techniques.

Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry
Astrometric surveys provide the opportunity to measure the absolutemagnitudes of large numbers of stars, but only if the individualline-of-sight extinctions are known. Unfortunately, extinction is highlydegenerate with stellar effective temperature when estimated frombroad-band optical/infrared photometry. To address this problem, Iintroduce a Bayesian method for estimating the intrinsic parameters of astar and its line-of-sight extinction. It uses both photometry andparallaxes in a self-consistent manner in order to provide anon-parametric posterior probability distribution over the parameters.The method makes explicit use of domain knowledge by employing theHertzsprung-Russell Diagram (HRD) to constrain solutions and to ensurethat they respect stellar physics. I first demonstrate this method byusing it to estimate effective temperature and extinction from BVJHKdata for a set of artificially reddened Hipparcos stars, for whichaccurate effective temperatures have been estimated from high-resolutionspectroscopy. Using just the four colours, we see the expected strongdegeneracy (positive correlation) between the temperature andextinction. Introducing the parallax, apparent magnitude and the HRDreduces this degeneracy and improves both the precision (reduces theerror bars) and the accuracy of the parameter estimates, the latter byabout 35 per cent. The resulting accuracy is about 200 K in temperatureand 0.2 mag in extinction. I then apply the method to estimate theseparameters and absolute magnitudes for some 47 000 F, G, K Hipparcosstars which have been cross-matched with Two-Micron All-Sky Survey(2MASS). The method can easily be extended to incorporate the estimationof other parameters, in particular metallicity and surface gravity,making it particularly suitable for the analysis of the 109stars from Gaia.

The PASTEL catalogue of stellar parameters
Aims: The PASTEL catalogue is an update of the [Fe/H] catalogue,published in 1997 and 2001. It is a bibliographical compilation ofstellar atmospheric parameters providing (T_eff, log g, [Fe/H])determinations obtained from the analysis of high resolution, highsignal-to-noise spectra, carried out with model atmospheres. PASTEL alsoprovides determinations of the one parameter T_eff based on variousmethods. It is aimed in the future to provide also homogenizedatmospheric parameters and elemental abundances, radial and rotationalvelocities. A web interface has been created to query the catalogue onelaborated criteria. PASTEL is also distributed through the CDS databaseand VizieR. Methods: To make it as complete as possible, the mainjournals have been surveyed, as well as the CDS database, to findrelevant publications. The catalogue is regularly updated with newdeterminations found in the literature. Results: As of Febuary2010, PASTEL includes 30151 determinations of either T_eff or (T_eff,log g, [Fe/H]) for 16 649 different stars corresponding to 865bibliographical references. Nearly 6000 stars have a determination ofthe three parameters (T_eff, log g, [Fe/H]) with a high qualityspectroscopic metallicity.The catalogue can be queried through a dedicated web interface at http://pastel.obs.u-bordeaux1.fr/.It is also available in electronic form at the Centre de DonnéesStellaires in Strasbourg (http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=B/pastel),at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orvia http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/515/A111

Chemical Abundances of Outer Halo Stars in the Milky Way
We present the chemical abundances of 57 metal-poor ([Fe/H] 5 kpc above andbelow the Galactic plane. High-resolution (R ˜ 50000-55000), highsignal-to-noise (S/N > 100) spectra for the sample stars obtainedwith Subaru/HDS were used to derive the chemical abundances of Na, Mg,Ca, Ti, Cr, Mn, Fe, Ni, Zn, Y, and Ba with an LTE abundance analysiscode. The resulting abundance data were combined with those presented inthe literature that mostly targeted at smaller Zmax stars,and both data were used to investigate any systematic trends in detailedabundance patterns depending on their kinematics. It was shown that, inthe metallicity range of ?2 < [Fe/H] < ?1, the [Mg/Fe]ratios for stars with Zmax > 5 kpc are systematicallylower (˜0.1 dex) than those with a smaller Zmax. Forthis metallicity range, a modest degree of depression in the [Si/Fe] andthe [Ca/Fe] ratios was also observed. This result of lower [?/Fe]for the assumed outer halo stars is consistent with previous studiesthat found a signature of lower [?/Fe] ratios for stars withextreme kinematics. The distribution of the [Mg/Fe] ratios for the outerhalo stars partly overlaps with that for stars belonging to the MilkyWay dwarf satellites in the metallicity interval of ?2 < [Fe/H]< ?1 and spans a range intermediate between the distributionsfor the inner halo stars and the stars belonging to the satellites. Ourresults confirm the inhomogeneous nature of the chemical abundanceswithin the Milky Way stellar halo, depending on the kinematic propertiesof the constituent stars, as suggested by earlier studies. Possibleimplications for the formation of the Milky Way halo and its relevanceto the suggested dual nature of the halo are discussed.

Fast Winds and Mass Loss from Metal-Poor Field Giants
Echelle spectra of the infrared He I λ10830 line were obtainedwith NIRSPEC on the Keck 2 telescope for 41 metal-deficient field giantstars including those on the red giant branch (RGB), asymptotic giantbranch (AGB), and red horizontal branch (RHB). The presence of this He Iline is ubiquitous in stars with T effgsim 4500 K andMV fainter than -1.5, and reveals the dynamics of theatmosphere. The line strength increases with effective temperature for Teffgsim 5300 K in RHB stars. In AGB and RGB stars, the linestrength increases with luminosity. Fast outflows (gsim 60 kms-1) are detected from the majority of the stars andabout 40% of the outflows have sufficient speed as to allow escape ofmaterial from the star as well as from a globular cluster. Outflowspeeds and line strengths do not depend on metallicity for our sample([Fe/H]= -0.7 to -3.0), suggesting the driving mechanism forthese winds derives from magnetic and/or hydrodynamic processes. Gasoutflows are present in every luminous giant, but are not detected inall stars of lower luminosity indicating possible variability. Mass lossrates ranging from ~3 × 10-10 to ~6 ×10-8 M sun yr-1 estimatedfrom the Sobolev approximation for line formation represent values withevolutionary significance for red giants and RHB stars. We estimate that0.2 M sun will be lost on the RGB, and the torque of thiswind can account for observations of slowly rotating RHB stars in thefield. About 0.1-0.2 M sun will be lost on the RHB itself.This first empirical determination of mass loss on the RHB maycontribute to the appearance of extended horizontal branches in globularclusters. The spectra appear to resolve the problem of missingintracluster material in globular clusters. Opportunities exist for"wind smothering" of dwarf stars by winds from the evolved population,possibly leading to surface pollution in regions of high stellardensity.Data presented herein were obtained at the W. M. Keck Observatory, whichis operated as a scientific partnership among the California Instituteof Technology, the University of California, and the NationalAeronautics and Space Administration. The Observatory was made possibleby the generous financial support of the W. M. Keck Foundation.

An Overview of the Rotational Behavior of Metal-poor Stars
This paper describes the behavior of the rotational velocity inmetal-poor stars ([Fe/H] <= -0.5 dex) in different evolutionarystages, based on vsin i values from the literature. Our sample iscomprised of stars in the field and some Galactic globular clusters,including stars on the main sequence, the red giant branch (RGB), andthe horizontal branch (HB). The metal-poor stars are, mainly, slowrotators, and their vsin i distribution along the HR diagram is quitehomogeneous. Nevertheless, a few moderate to high values of vsin i arefound in stars located on the main sequence and the HB. We show that theoverall distribution of vsin i values is basically independent ofmetallicity for the stars in our sample. In particular, thefast-rotating main sequence stars in our sample present rotation ratessimilar to their metal-rich counterparts, suggesting that some of themmay actually be fairly young, in spite of their low metallicity, or elsethat at least some of them would be better classified as blue stragglerstars. We do not find significant evidence of evolution in vsin i valuesas a function of position on the RGB; in particular, we do not confirmprevious suggestions that stars close to the RGB tip rotate faster thantheir less-evolved counterparts. While the presence of fast rotatorsamong moderately cool blue HB stars has been suggested to be due toangular momentum transport from a stellar core that has retainedsignificant angular momentum during its prior evolution, we find thatany such transport mechanisms most likely operate very fast as the stararrives on the zero-age HB (ZAHB), since we do not find a link betweenevolution off the ZAHB and vsin i values. We present an extensivetabulation of all quantities discussed in this paper, including rotationvelocities, temperatures, gravities, and metallicities [Fe/H], as wellas broadband magnitudes and colors.

Chemical Inhomogeneities in the Milky Way Stellar Halo
We have compiled a sample of 699 stars from the recent literature withdetailed chemical abundance information (spanning –4.2lsim [Fe/H]lsim+0.3), and we compute their space velocities and Galactic orbitalparameters. We identify members of the inner and outer stellar halopopulations in our sample based only on their kinematic properties andthen compare the abundance ratios of these populations as a function of[Fe/H]. In the metallicity range where the two populations overlap(–2.5lsim [Fe/H] lsim–1.5), the mean [Mg/Fe] of the outerhalo is lower than the inner halo by –0.1 dex. For [Ni/Fe] and[Ba/Fe], the star-to-star abundance scatter of the inner halo isconsistently smaller than in the outer halo. The [Na/Fe], [Y/Fe],[Ca/Fe], and [Ti/Fe] ratios of both populations show similar means andlevels of scatter. Our inner halo population is chemically homogeneous,suggesting that a significant fraction of the Milky Way stellar halooriginated from a well-mixed interstellar medium. In contrast, our outerhalo population is chemically diverse, suggesting that anothersignificant fraction of the Milky Way stellar halo formed in remoteregions where chemical enrichment was dominated by local supernovaevents. We find no abundance trends with maximum radial distance fromthe Galactic center or maximum vertical distance from the Galactic disk.We also find no common kinematic signature for groups of metal-poorstars with peculiar abundance patters, such as the α-poor stars orstars showing unique neutron-capture enrichment patterns. Several starsand dwarf spheroidal systems with unique abundance patterns spend themajority of their time in the distant regions of the Milky Way stellarhalo, suggesting that the true outer halo of the Galaxy may have littleresemblance to the local stellar halo.

Rotation and Macroturbulence in Metal-Poor Field Red Giant and Red Horizontal Branch Stars
We report the results for rotational velocities, Vrot sin i,and macroturbulence dispersions, ζRT, for 12 metal-poorfield red giant branch (RGB) stars and 7 metal-poor field red horizontalbranch (RHB) stars. The results are based on Fourier transform analysesof absorption line profiles from high-resolution (R ≈ 120,000),high-S/N (≈215 per pixel; ≈345 per resolution element) spectraobtained with the Gecko spectrograph at the Canada-France-HawaiiTelescope (CFHT). The stars were selected from the authors' previousstudies of 20 RHB and 116 RGB stars, based primarily onlarger-than-average line-broadening values. We find thatζRT values for the metal-poor RGB stars are very similarto those for metal-rich disk giants studied earlier by Gray and hiscollaborators. Six of the RGB stars have small rotational values, lessthan 2.0 km s-1, while five show significantrotation/enhanced line broadening, over 3 km s-1. We confirmthe rapid rotation rate for RHB star HD 195636, found earlier byPreston. This star's rotation is comparable to that of the fastest knownrotating blue horizontal branch (BHB) stars, when allowance is made fordifferences in radii and moments of inertia. The other six RHB starshave somewhat lower rotation but show a trend to higher values at highertemperatures (lower radii). Comparing our results with those for BHBstars from Kinman et al., we find that the fraction of rapidly rotatingRHB stars is somewhat lower than is found among BHB stars. The number ofrapidly rotating RHB stars is also smaller than we would have expectedfrom the observed rotation of the RGB stars. We devise two empiricalmethods to translate our earlier line-broadening results intoVrot sin i for all the RGB and RHB stars they studied.Binning the RGB stars by luminosity, we find that most metal-poor fieldRGB stars show no detectable sign, on average, of rotation, which is notsurprising given the stars' large radii. However, the most luminousstars, with MV <= -1.5, do show net rotation, with meanvalues of 2-4 km s-1, depending on the algorithm employed,and also show signs of radial velocity jitter and mass loss. This"rotation" may in fact prove to be due to other line-broadening effects,such as shock waves or pulsation.Based on observations obtained at the Canada-France-Hawaii Telescope(CFHT) which is operated by the National Research Council of Canada, theInstitut National des Sciences de l'Univers of the Centre National de laRecherche Scientifique de France, and the University of Hawaii.

Halo Star Streams in the Solar Neighborhood
We have assembled a sample of halo stars in the solar neighborhood tolook for halo substructure in velocity and angular momentum space. Oursample (231 stars) includes red giants, RR Lyrae variable stars, and redhorizontal branch stars within 2.5 kpc of the Sun with [Fe/H] less than-1.0. It was chosen to include stars with accurate distances, spacevelocities, and metallicities, as well as well-quantified errors. Withour data set, we confirm the existence of the streams found by Helmi andcoworkers, which we refer to as the H99 streams. These streams have adouble-peaked velocity distribution in the z-direction (out of theGalactic plane). We use the results of modeling of the H99 streams byHelmi and collaborators to test how one might use vz velocityinformation and radial velocity information to detect kinematicsubstructure in the halo. We find that detecting the H99 streams withradial velocities alone would require a large sample (e.g.,approximately 150 stars within 2 kpc of the Sun and within 20° ofthe Galactic poles). In addition, we use the velocity distribution ofthe H99 streams to estimate their age. From our model of the progenitorof the H99 streams, we determine that it was accreted between 6 and 9Gyr ago. The H99 streams have [α/Fe] abundances similar to otherhalo stars in the solar neighborhood, suggesting that the gas thatformed these stars were enriched mostly by Type II supernovae. We havealso discovered in angular momentum space two other possiblesubstructures, which we refer to as the retrograde and progradeoutliers. The retrograde outliers are likely to be halo substructure,but the prograde outliers are most likely part of the smooth halo. Theretrograde outliers have significant structure in the vφdirection and show a range of [α/Fe], with two having low[α/Fe] for their [Fe/H]. The fraction of substructure stars in oursample is between 5% and 7%. The methods presented in this paper can beused to exploit the kinematic information present in future largedatabases like RAVE, SDSS-II/SEGUE, and Gaia.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

Empirically Constrained Color-Temperature Relations. II. uvby
A new grid of theoretical color indices for the Strömgren uvbyphotometric system has been derived from MARCS model atmospheres and SSGsynthetic spectra for cool dwarf and giant stars having-3.0<=[Fe/H]<=+0.5 and 3000<=Teff<=8000 K. Atwarmer temperatures (i.e., 8000-2.0. To overcome thisproblem, the theoretical indices at intermediate and high metallicitieshave been corrected using a set of color calibrations based on fieldstars having well-determined distances from Hipparcos, accurateTeff estimates from the infrared flux method, andspectroscopic [Fe/H] values. In contrast with Paper I, star clustersplayed only a minor role in this analysis in that they provided asupplementary constraint on the color corrections for cool dwarf starswith Teff<=5500 K. They were mainly used to test thecolor-Teff relations and, encouragingly, isochrones thatemploy the transformations derived in this study are able to reproducethe observed CMDs (involving u-v, v-b, and b-y colors) for a number ofopen and globular clusters (including M67, the Hyades, and 47 Tuc)rather well. Moreover, our interpretations of such data are verysimilar, if not identical, with those given in Paper I from aconsideration of BV(RI)C observations for the sameclusters-which provides a compelling argument in support of thecolor-Teff relations that are reported in both studies. Inthe present investigation, we have also analyzed the observedStrömgren photometry for the classic Population II subdwarfs,compared our ``final'' (b-y)-Teff relationship with thosederived empirically in a number of recent studies and examined in somedetail the dependence of the m1 index on [Fe/H].Based, in part, on observations made with the Nordic Optical Telescope,operated jointly on the island of La Palma by Denmark, Finland, Iceland,Norway, and Sweden, in the Spanish Observatorio del Roque de losMuchachos of the Instituto de Astrofisica de Canarias.Based, in part, on observations obtained with the Danish 1.54 mtelescope at the European Southern Observatory, La Silla, Chile.

Spectroscopic Binaries, Velocity Jitter, and Rotation in Field Metal-poor Red Giant and Red Horizontal-Branch Stars
We summarize 2007 radial velocity measurements of 91 metal-poor fieldred giants. Excluding binary systems with orbital solutions, ourcoverage averages 13.7 yr per star, with a maximum of 18.0 yr. We reportfour significant findings. (1) Sixteen stars are found to bespectroscopic binaries, and we present orbital solutions for 14 of them.The spectroscopic binary frequency of the metal-poor red giants, with[Fe/H]<=-1.4, for periods less than 6000 days, is 16%+/-4%, which isnot significantly different from that of comparable-metallicity fielddwarfs, 17%+/-2%. The two CH stars in our program, BD -1°2582 and HD135148, are both spectroscopic binaries. (2) Velocity jitter is presentamong about 40% of the giants with MV<=-1.4. The twobest-observed cases, HD 3008 and BD +22°2411, showpseudoperiodicities of 172 and 186 days, longer than any knownlong-period variable in metal-poor globular clusters. Photometricvariability seen in HD 3008 and three other stars showing velocityjitter hints that starspots are the cause. However, the phasing of thevelocity data with the photometry data from Hipparcos is not consistentwith a simple starspot model for HD 3008. We argue against orbitalmotion effects and radial pulsation, so rotational modulation remainsthe best explanation. The implied rotational velocities for HD 3008 andBD +22°2411, both with MV<=-1.4 and R~50Rsolar, exceed 12 km s-1. (3) Including HD 3008and BD +22°2411, we have found signs of significant excess linebroadening in eight of the 17 red giants with MV<=-1.4,which we interpret as rotation. In three cases, BD +30°2034, CD-37°14010, and HD 218732, the rotation is probably induced by tidallocking between axial rotation and the observed orbital motion with astellar companion. But this cannot explain the other five stars in oursample that display signs of significant rotation. This high frequencyof elevated rotational velocities does not appear to be caused bystellar mass transfer or mergers: there are too few main-sequencebinaries with short enough periods. We also note that the lack of anynoticeable increase in mean rotation at the magnitude level of the redgiant branch luminosity function ``bump'' argues against the rapidrotation's being caused by the transport of internal angular momentum tothe surface. Capture of a planetary-mass companion as a red giantexpands in radius could explain the high rotational velocities. (4) Wealso find significant rotation in at least six of the roughly 15 (40%)red horizontal-branch stars in our survey. It is likely that theenhanced rotation seen among a significant fraction of both blue and redhorizontal-branch stars arose when these stars were luminous red giants.Rapid rotation alone therefore appears insufficient cause to populatethe blue side of the horizontal branch. While the largest projectedrotational velocities seen among field blue and red horizontal-branchstars are consistent with their different sizes, neither are consistentwith the large values we find for the largest red giants. This suggeststhat some form of angular momentum loss (and possibly mass loss) hasbeen at work. Also puzzling is the apparent absence of rotation seen infield RR Lyrae variables. Angular momentum transfer and conservation inevolved metal-poor field stars thus pose many interesting questions forthe evolution of low-mass stars.

Catalogue of [Fe/H] determinations for FGK stars: 2001 edition
The catalogue presented here is a compilation of published atmosphericparameters (Teff, log g, [Fe/H]) obtained from highresolution, high signal-to-noise spectroscopic observations. This newedition has changed compared to the five previous versions. It is nowrestricted to intermediate and low mass stars (F, G and K stars). Itcontains 6354 determinations of (Teff, log g, [Fe/H]) for3356 stars, including 909 stars in 79 stellar systems. The literature iscomplete between January 1980 and December 2000 and includes 378references. The catalogue is made up of two tables, one for field starsand one for stars in galactic associations, open and globular clustersand external galaxies. The catalogue is distributed through the CDSdatabase. Access to the catalogue with cross-identification to othersets of data is also possible with VizieR (Ochsenbein et al.\cite{och00}). The catalogue (Tables 1 and 2) is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/373/159 and VizieRhttp://vizier.u-strasbg.fr/.

Neutron-Capture Elements in the Early Galaxy: Insights from a Large Sample of Metal-poor Giants
New abundances for neutron-capture (n-capture) elements in a largesample of metal-poor giants from the Bond survey are presented. Thespectra were acquired with the KPNO 4 m echelle and coudé feedspectrographs, and have been analyzed using LTE fine-analysis techniqueswith both line analysis and spectral synthesis. Abundances of eightn-capture elements (Sr, Y, Zr, Ba, La, Nd, Eu, and Dy) in 43 stars havebeen derived from blue (λλ4070-4710, R~20,000, S/Nratio~100-200) echelle spectra and red (λλ6100-6180,R~22,000, S/N ratio~100-200) coudé spectra, and the abundance ofBa only has been derived from the red spectra for an additional 27stars. Overall, the abundances show clear evidence for a largestar-to-star dispersion in the heavy element-to-iron ratios. Thiscondition must have arisen from individual nucleosynthetic events inrapidly evolving halo progenitors that injected newly manufacturedn-capture elements into an inhomogeneous early Galactic halointerstellar medium. The new data also confirm that at metallicities[Fe/H]<~-2.4, the abundance pattern of the heavy (Z>=56) n-captureelements in most giants is well-matched to a scaled solar systemr-process nucleosynthesis pattern. The onset of the main r-process canbe seen at [Fe/H]~-2.9 this onset is consistent with the suggestion thatlow mass Type II supernovae are responsible for the r-process.Contributions from the s-process can first be seen in some stars withmetallicities as low as [Fe/H]~-2.75 and are present in most stars withmetallicities [Fe/H]>-2.3. The appearance of s-process contributionsas metallicity increases presumably reflects the longer stellarevolutionary timescale of the (low-mass) s-process nucleosynthesissites. The lighter n-capture elements (Sr-Y-Zr) are enhanced relative tothe heavier r-process element abundances. Their production cannot beattributed solely to any combination of the solar system r- and mains-processes, but requires a mixture of material from the r-process andfrom an additional n-capture process that can operate at early Galactictime. This additional process could be the weak s-process in massive(~25 Msolar) stars, or perhaps a second r-process site, i.e.,different from the site that produces the heavier (Z>=56) n-captureelements.

Kinematics of Metal-poor Stars in the Galaxy. II. Proper Motions for a Large Nonkinematically Selected Sample
We present a revised catalog of 2106 Galactic stars, selected withoutkinematic bias and with available radial velocities, distance estimates,and metal abundances in the range -4.0<=[Fe/H]<=0.0. This updateof the 1995 Beers & Sommer-Larsen catalog includes newly derivedhomogeneous photometric distance estimates, revised radial velocitiesfor a number of stars with recently obtained high-resolution spectra,and refined metallicities for stars originally identified in the HKobjective-prism survey (which account for nearly half of the catalog)based on a recent recalibration. A subset of 1258 stars in this cataloghave available proper motions based on measurements obtained with theHipparcos astrometry satellite or taken from the updated AstrographicCatalogue (second epoch positions from either the Hubble Space TelescopeGuide Star Catalog or the Tycho Catalogue), the Yale/San Juan SouthernProper Motion Catalog 2.0, and the Lick Northern Proper Motion Catalog.Our present catalog includes 388 RR Lyrae variables (182 of which arenewly added), 38 variables of other types, and 1680 nonvariables, withdistances in the range 0.1 to 40 kpc.

The effective temperature scale of giant stars (F0-K5). I. The effective temperature determination by means of the IRFM
We have applied the InfraRed Flux Method (IRFM) to a sample ofapproximately 500 giant stars in order to derive their effectivetemperatures with an internal mean accuracy of about 1.5% and a maximumuncertainty in the zero point of the order of 0.9%. For the applicationof the IRFM, we have used a homogeneous grid of theoretical modelatmosphere flux distributions developed by \cite[Kurucz (1993)]{K93}.The atmospheric parameters of the stars roughly cover the ranges: 3500 K<= T_eff <= 8000 K; -3.0 <= [Fe/H] <= +0.5; 0.5 <= log(g) <= 3.5. The monochromatic infrared fluxes at the continuum arebased on recent photometry with errors that satisfy the accuracyrequirements of the work. We have derived the bolometric correction ofgiant stars by using a new calibration which takes the effect ofmetallicity into account. Direct spectroscopic determinations ofmetallicity have been adopted where available, although estimates basedon photometric calibrations have been considered for some stars lackingspectroscopic ones. The adopted infrared absolute flux calibration,based on direct optical measurements of stellar angular diameters, putsthe effective temperatures determined in this work in the same scale asthose obtained by direct methods. We have derived up to fourtemperatures, TJ, TH, TK and T_{L'},for each star using the monochromatic fluxes at different infraredwavelengths in the photometric bands J, H, K and L'. They show goodconsistency over 4000 K, and there is no appreciable trend withwavelength, metallicity and/or temperature. We provide a detaileddescription of the steps followed for the application of the IRFM, aswell as the sources of error and their effect on final temperatures. Wealso provide a comparison of the results with previous work.

Estimation of Stellar Metal Abundance. II. A Recalibration of the Ca II K Technique, and the Autocorrelation Function Method
We have recalibrated a method for the estimation of stellar metalabundance, parameterized as [Fe/H], based on medium-resolution (1-2Å) optical spectra (the majority of which cover the wavelengthrange 3700-4500 Å). The equivalent width of the Ca II K line (3933Å) as a function of [Fe/H] and broadband B-V color, as predictedfrom spectrum synthesis and model atmosphere calculations, is comparedwith observations of 551 stars with high-resolution abundances availablefrom the literature (a sevenfold increase in the number of calibrationstars that were previously available). A second method, based on theFourier autocorrelation function technique first described by Ratnatunga& Freeman, is used to provide an independent estimate of [Fe/H], ascalibrated by comparison with 405 standard-star abundances.Metallicities based on a combination of the two techniques for dwarfsand giants in the color range 0.30<=(B-V)_0<=1.2 exhibit anexternal 1 sigma scatter of approximately 0.10-0.20 dex over theabundance range -4.0<=[Fe/H]<=0.5. Particular attention has beengiven to the determination of abundance estimates at the metal-rich endof the calibration, where our previous attempt suffered from aconsiderable zero-point offset. Radial velocities, accurate toapproximately 10 km s^-1, are reported for all 551 calibration stars.

Ca II H and K Photometry on the UVBY System. III. The Metallicity Calibration for the Red Giants
New photometry on the uvby Ca system is presented for over 300 stars.When combined with previous data, the sample is used to calibrate themetallicity dependence of the hk index for cooler, evolved stars. Themetallicity scale is based upon the standardized merger of spectroscopicabundances from 38 studies since 1983, providing an overlap of 122evolved stars with the photometric catalog. The hk index producesreliable abundances for stars in the [Fe/H] range from -0.8 to -3.4,losing sensitivity among cooler stars due to saturation effects athigher [Fe/H], as expected.

On the Use of [Na/Fe] and [alpha/Fe] Ratios and Hipparcos-based (U, V, W) Velocities as Age Indicators among Low-Metallicity Halo Field Giants
We have examined the [Na/Fe] and [Mg/Fe] ratios in a sample of 68 fieldhalo giants with -3 <~ [Fe/H] <~ -1. We recalculated the Galactic(U, V, W) velocity components for these stars, using Hipparcos propermotions and a new Hipparcos-based distance scale. We used these data tosee how the abundance ratios may relate to kinematical substructure inthe Galactic halo. To isolate a set of true halo stars, we eliminatedmetal-weak thick-disk stars, about 10% of our sample. The field halogiants show the expected correlation of Na and Mg abundances, so we canuse Na as a surrogate for Mg and the alpha-elements. The most metal-poorstars show a wider dispersion of [Na/Fe] ratios than do the lessmetal-poor stars; the difference is most striking for stars onretrograde galactic orbits. Some 20% of our retrograde giants and 13% ofall our halo giants have [Na/Fe] <= -0.35 and may be significantlyyounger than the oldest halo objects. Halo giants considered ``young''by this Na abundance criterion show a preference for retrograde orbits.Giants in some globular clusters (e.g., M13) do not exhibit the Mgversus Na correlation found among halo field giants. Instead, they havevery large [Na/Fe] ratios and widely scattered [Mg/Fe] ratios, probablyinduced by deep mixing, which field halo giants apparently do notexperience.

Broad-band JHK(L') photometry of a sample of giants with 0.5 > [Fe/H] > -3
We present the results of a three-year campaign of broad-band photometryin the near-infrared J, H, K and L' bands for a sample of approximately250 giant stars carried out at the Observatorio del Teide (Tenerife,Spain). Transformations of the Telescopio Carlos Sanchez systeminto/from several currently used infrared systems are extended to theredward part of the colour axis. The linearity of our photometric systemin the range -3 mag [Fe/H] >-3. Data of comparable quality previouslypublished have been added to the sample in order to increase thereliability of the relations to be obtained. We also provide mean IRcolours for giant stars according to spectral type.ables 1, 2 and 3 are only available in electronic form via the CDS(anonymous ftp 130.79.128.5 or http://cdsweb.u-strasbg.fr/Abstract.html

Early evolution of the Galactic halo revealed from Hipparcos observations of metal-poor stars
The kinematics of 122 red giant and 124 RR Lyrae stars in the solarneighborhood are studied using accurate measurements of their propermotions obtained by the Hipparcos astrometry satellite, combined withtheir published photometric distances, metal abundances, and radialvelocities. A majority of these sample stars have metal abundances of(Fe/H) = -1 or less and thus represent the old stellar populations inthe Galaxy. The halo component, with (Fe/H) = -1.6 or less, ischaracterized by a lack of systemic rotation and a radially elongatedvelocity ellipsoid. About 16 percent of such metal-poor stars have loworbital eccentricities, and we see no evidence of a correlation between(Fe/H) and e. Based on the model for the e-distribution of orbits, weshow that this fraction of low-e stars for (Fe/H) = -1.6 or less isexplained by the halo component alone, without introducing the extradisk component claimed by recent workers. This is also supported by theabsence of a significant change in the e-distribution with height fromthe Galactic plane. In the intermediate-metallicity range, we find thatstars with disklike kinematics have only modest effects on thedistributions of rotational velocities and e for the sample at absolutevalue of z less than 1 kpc. This disk component appears to constituteonly 10 percent for (Fe/H) between -1.6 and -1 and 20 percent for (Fe/H)between -1.4 and -1.

Red Horizontal Branch and Early Asymptotic Branch Stars Near the Sun.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1997AJ....114.1666E&db_key=AST

A catalogue of [Fe/H] determinations: 1996 edition
A fifth Edition of the Catalogue of [Fe/H] determinations is presentedherewith. It contains 5946 determinations for 3247 stars, including 751stars in 84 associations, clusters or galaxies. The literature iscomplete up to December 1995. The 700 bibliographical referencescorrespond to [Fe/H] determinations obtained from high resolutionspectroscopic observations and detailed analyses, most of them carriedout with the help of model-atmospheres. The Catalogue is made up ofthree formatted files: File 1: field stars, File 2: stars in galacticassociations and clusters, and stars in SMC, LMC, M33, File 3: numberedlist of bibliographical references The three files are only available inelectronic form at the Centre de Donnees Stellaires in Strasbourg, viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5), or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Classification of Population II Stars in the Vilnius Photometric System. I. Methods
The methods used for classification of Population II stars in theVilnius photometric system are described. An extensive set of standardswith known astrophysical parameters compiled from the literature sourcesis given. These standard stars are classified in the Vilnius photometricsystem using the methods described. The accuracy of classification isevaluated by a comparison of the astrophysical parameters derived fromthe Vilnius photometric system with those estimated from spectroscopicstudies as well as from photometric data in other systems. For dwarfsand subdwarfs, we find a satisfactory agreement between our reddeningsand those estimated in the uvbyscriptstyle beta system. The standarddeviation of [Fe/H] deter mined in the Vilnius system is about 0.2 dex.The absolute magnitude for dwarfs and subdwarfs is estimated with anaccuracy of scriptstyle <=0.5 mag.

Ca II H and K Filter Photometry on the UVBY System. II. The Catalog of Observations
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995AJ....109.2828T&db_key=AST

Kinematics of metal-poor stars in the galaxy
We discuss the kinematic properties of a sample of 1936 Galactic stars,selected without kinematic bias, and with abundances (Fe/H) is less thanor equal to -0.6. The stars selected for this study all have measuredradial velocities, and the majority have abundances determined fromspectroscopic or narrow-/intermediate-band photometric techniques. Incontrast to previous examinations of the kinematics of the metal-poorstars in the Galaxy, our sample contains large numbers of stars that arelocated at distances in excess of 1 kpc from the Galactic plane. Thus, amuch clearer picture of the nature of the metal-deficient populations inthe Galaxy can now be drawn.

A catalogue of Fe/H determinations - 1991 edition
A revised version of the catalog of Fe/H determinations published by G.Cayrel et al. (1985) is presented. The catalog contains 3252 Fe/Hdeterminations for 1676 stars. The literature is complete up to December1990. The catalog includes only Fe/H determinations obtained from highresolution spectroscopic observations based on detailed spectroscopicanalyses, most of them carried out with model atmospheres. The catalogcontains a good number of Fe/H determinations for stars from open andglobular clusters and for some supergiants in the Magellanic Clouds.

Abundances of neutron capture elements in Population II stars
The authors have presented new heavy-element abundance results for 20very metal poor stars. It has been demonstrated that the very heavyelement abundances correlate only loosely with the Fe abundances:star-to-star scatter exists in excess of observational error, andsignals the incomplete mixing of nucleosynthesis products in thegalactic halo. Also it has been shown that a distinct r-process patternis characteristic of the very heavy element abundance patterns. Finally,the onset of large amounts of galactic s-processing at a metallicity of?-2 has been identified and has led to the suggestion that the timescale of the buildup of Galactic metallicities to this value was?107yr.

Új cikk hozzáadása


Kapcsolódó hivatkozások

  • - (nincs kapcsolódó hivatkozás) -
Új link hozzáadása


Besorolás csoportokba:


Pozíciós és asztrometriai adatok

Csillagkép:Sas
Rektaszcenzió:21h28m01.32s
Deklináció:-03°07'40.9"
Vizuális fényesség:10.086
RA sajátmozgás:19.5
Dec sajátmozgás:-24.2
B-T magnitude:10.957
V-T magnitude:10.158

Katalógusok és elnevezések:
Megfelelő nevek   (Edit)
TYCHO-2 2000TYC 5199-929-1
USNO-A2.0USNO-A2 0825-19224034
HIPHIP 105993

→ További katalógusok és elnevezések lekérése VizieR-ből