Tartalom
Képek
Kép feltöltése
DSS Images Other Images
Kapcsolódó cikkek
Photoelectric Minima of Selected Eclipsing Binaries and Maxima of Pulsating Stars Not Available
| Contact Binaries with Additional Components. II. A Spectroscopic Search for Faint Tertiaries It is unclear how very close binary stars form, given that during thepre-main-sequence phase the component stars would have been inside eachother. One hypothesis is that they formed farther apart but were broughtin closer after formation by gravitational interaction with a thirdmember of the system. If so, all close binaries should be members oftriple (or higher order) systems. As a test of this prediction, wepresent a search for the signature of third components in archivalspectra of close binaries. In our sample of 75 objects, 23 show evidencefor the presence of a third component, down to a detection limit oftertiary flux contributions of about 0.8% at 5200 Å (consideringonly contact and semidetached binaries, we find 20 out of 66). In ahomogeneous subset of 59 contact binaries, we are fairly confident thatthe 15 tertiaries we have detected are all tertiaries present with massratios 0.28<~M3/M12<~0.75 and implied outerperiods P<~106 days. We find that if the frequency oftertiaries were the same as that of binary companions to solar-typestars, one would expect to detect about 12 tertiaries. In contrast, ifall contact binaries were in triple systems, one would expect about 20.Thus, our results are not conclusive but are sufficiently suggestive towarrant further studies.
| Contact Binaries with Additional Components. I. The Extant Data We have attempted to establish observational evidence for the presenceof distant companions that may have acquired and/or absorbed angularmomentum during the evolution of multiple systems, thus facilitating orenabling the formation of contact binaries. In this preliminaryinvestigation we use several techniques (some of themdistance-independent) and mostly disregard the detection biases ofindividual techniques in an attempt to establish a lower limit to thefrequency of triple systems. While the whole sample of 151 contactbinary stars brighter than Vmax=10 mag gives a firm lowerlimit of 42%+/-5%, the corresponding number for the much better observednorthern-sky subsample is 59%+/-8%. These estimates indicate that mostcontact binary stars exist in multiple systems.
| A catalogue of eclipsing variables A new catalogue of 6330 eclipsing variable stars is presented. Thecatalogue was developed from the General Catalogue of Variable Stars(GCVS) and its textual remarks by including recently publishedinformation about classification of 843 systems and making correspondingcorrections of GCVS data. The catalogue1 represents thelargest list of eclipsing binaries classified from observations.
| Astrometric orbits of SB^9 stars Hipparcos Intermediate Astrometric Data (IAD) have been used to deriveastrometric orbital elements for spectroscopic binaries from the newlyreleased Ninth Catalogue of Spectroscopic Binary Orbits(SB^9). This endeavour is justified by the fact that (i) theastrometric orbital motion is often difficult to detect without theprior knowledge of the spectroscopic orbital elements, and (ii) suchknowledge was not available at the time of the construction of theHipparcos Catalogue for the spectroscopic binaries which were recentlyadded to the SB^9 catalogue. Among the 1374 binaries fromSB^9 which have an HIP entry (excluding binaries with visualcompanions, or DMSA/C in the Double and Multiple Stars Annex), 282 havedetectable orbital astrometric motion (at the 5% significance level).Among those, only 70 have astrometric orbital elements that are reliablydetermined (according to specific statistical tests), and for the firsttime for 20 systems. This represents a 8.5% increase of the number ofastrometric systems with known orbital elements (The Double and MultipleSystems Annex contains 235 of those DMSA/O systems). The detection ofthe astrometric orbital motion when the Hipparcos IAD are supplementedby the spectroscopic orbital elements is close to 100% for binaries withonly one visible component, provided that the period is in the 50-1000 drange and the parallax is >5 mas. This result is an interestingtestbed to guide the choice of algorithms and statistical tests to beused in the search for astrometric binaries during the forthcoming ESAGaia mission. Finally, orbital inclinations provided by the presentanalysis have been used to derive several astrophysical quantities. Forinstance, 29 among the 70 systems with reliable astrometric orbitalelements involve main sequence stars for which the companion mass couldbe derived. Some interesting conclusions may be drawn from this new setof stellar masses, like the enigmatic nature of the companion to theHyades F dwarf HIP 20935. This system has a mass ratio of 0.98 but thecompanion remains elusive.
| Deep, Low Mass Ratio Overcontact Binary Systems. III. CU Tauri and TV Muscae New CCD photometric light curves in the B and V bands of the neglected WUMa-type eclipsing variable star CU Tauri are presented. The O'Connelleffect in the V light curve obtained in 2001 by Yang and Liu was aboutΔV=+0.015, but it vanished in our 2004 observations. Thevariations in the levels of both minima were seen. Our two epochs oflight minimum and others compiled from the literature were used for theperiod study. It is shown that the types of some eclipse times wereincorrect and the values of the period obtained by previousinvestigators were aliases that prevented formation of a plausible O-Ccurve. A new linear ephemeris was derived, and it is discovered that theorbital period of CU Tau shows a continuous decrease at a rate ofdP/dt=-1.81×10-6 days yr-1. The presentsymmetric light curves were solved with the 2003 version of theWilson-Devinney (W-D) code. Both our solutions and those derived by Yangand Liu reveal that CU Tau is a deep (f=50.1%+/-3.2%), low mass ratio(q=0.1770+/-0.0017) overcontact binary system.Meanwhile, the photoelectric light curves in the B, V, R, and I bands ofTV Muscae published by Hilditch and coworkers were reanalyzed with the2003 version of the W-D code. It is shown that the low mass ratio binaryturns out to be a deep overcontact system with f=74.3%+/-11.3%. A periodanalysis with all collected times of light minimum revealed acombination of a long-term period decrease(dP/dt=-2.16×10-7 days yr-1) and a possiblecyclic change with a period of 29.1 yr. The rapid long-term perioddecreases of both systems can be explained as a combination of the masstransfer from the more massive component to the less massive one and theangular momentum loss due to mass outflow from the L2 point. In thatway, the overcontact degrees of the two systems will become deeper astheir periods decrease, and finally they will evolve into a singlerapid-rotation star. However, for CU Tau, the rate of the secular perioddecrease is very large when compared with the other systems of the sametype. This suggests that the long-term period decrease may be part of along-period periodic change, which we need more data to check.
| Photoelectric Minima of Eclipsing Binaries Not Available
| Kinematics of W Ursae Majoris type binaries and evidence of the two types of formation We study the kinematics of 129 W UMa binaries and we discuss itsimplications on the contact binary evolution. The sample is found to beheterogeneous in the velocity space. That is, kinematically younger andolder contact binaries exist in the sample. A kinematically young (0.5Gyr) subsample (moving group) is formed by selecting the systems thatsatisfy the kinematical criteria of moving groups. After removing thepossible moving group members and the systems that are known to bemembers of open clusters, the rest of the sample is called the fieldcontact binary (FCB) group. The FCB group is further divided into fourgroups according to the orbital period ranges. Then, a correlation isfound in the sense that shorter-period less-massive systems have largervelocity dispersions than the longer-period more-massive systems.Dispersions in the velocity space indicate a 5.47-Gyr kinematical agefor the FCB group. Compared with the field chromospherically activebinaries (CABs), presumably detached binary progenitors of the contactsystems, the FCB group appears to be 1.61 Gyr older. Assuming anequilibrium in the formation and destruction of CAB and W UMa systems inthe Galaxy, this age difference is treated as an empirically deducedlifetime of the contact stage. Because the kinematical ages (3.21, 3.51,7.14 and 8.89 Gyr) of the four subgroups of the FCB group are muchlonger than the 1.61-Gyr lifetime of the contact stage, the pre-contactstages of the FCB group must dominantly be producing the largedispersions. The kinematically young (0.5 Gyr) moving group covers thesame total mass, period and spectral ranges as the FCB group. However,the very young age of this group does not leave enough room forpre-contact stages, and thus it is most likely that these systems wereformed in the beginning of the main sequence or during thepre-main-sequence contraction phase, either by a fission process or mostprobably by fast spiralling in of two components in a common envelope.
| On the properties of contact binary stars We have compiled a catalogue of light curve solutions of contact binarystars. It contains the results of 159 light curve solutions. Theproperties of contact binary stars were studied using the cataloguedata. As is well known since Lucy's (\cite{Lucy68a},b) and Mochnacki's(\cite{Mochnacki81}) studies, primary components transfer their ownenergy to the secondary star via the common envelope around the twostars. This transfer was parameterized by a transfer parameter (ratio ofthe observed and intrinsic luminosities of the primary star). We provethat this transfer parameter is a simple function of the mass andluminosity ratios. We introduced a new type of contact binary stars: Hsubtype systems which have a large mass ratio (q>0.72). These systemsshow behaviour in the luminosity ratio- transfer parameter diagram thatis very different from that of other systems and according to ourresults the energy transfer rate is less efficient in them than in othertypes of contact binary stars. We also show that different types ofcontact binaries have well defined locations on the mass ratio -luminosity ratio diagram. Several contact binary systems do not followLucy's relation (L2/L1 =(M2/M1)0.92). No strict mass ratio -luminosity ratio relation of contact binary stars exists.Tables 2 and 3 are available in electronic form athttp://www.edpsciences.org
| Key parameters of W UMa-type contact binaries discovered by HIPPARCOS A sample of W UMa-type binaries which were discovered by the HIPPARCOSsatellite was constructed with the aid of well defined selectioncriteria described in this work. The selection process showed up thatseveral systems of which the variability types have been assigned as EBin HIPPARCOS catalogue are genuine contact binaries of W UMa-type. Thelight curves of the 64 selected systems based on HIPPARCOS photometrywere analyzed with the aid of light curve synthesis method by Rucinskiand their geometric elements (namely mass ratio q, degree of contact f,and orbital inclination i) were determined. The solutions were obtainedfor the first time for many of the systems in the sample and would be agood source for their future light curve analyses based on more precisefollow-up observations.Based on observations made with the ESA HIPPARCOSastrometry satellite.
| Catalogue of the field contact binary stars A catalogue of 361 galactic contact binaries is presented. Listedcontact binaries are divided into five groups according to the type andquality of the available observations and parameters. For all systemsthe ephemeris for the primary minimum, minimum and maximum visualbrightness and equatorial coordinates are given. If available,photometric elements, (m1+m2)sin3i,spectral type, parallax and magnitude of the O'Connell effect are alsogiven. Photometric data for several systems are augmented by newobservations. The quality of the available data is assessed and systemsrequiring modern light-curve solutions are selected. Selectedstatistical properties of the collected data are discussed.
| New Photoelectric and CCD Minima and Updated Ephemerides of Selected Eclipsing Binaries This report presents minima times and updated ephemerides of selectedeclipsing binaries
| The First Ground-Based Photometry of Contact Binaries FN Cam and EX Leo Not Available
| Radial Velocity Studies of Close Binary Stars. V. Radial velocity measurements and sine-curve fits to the orbital velocityvariations are presented for the fifth set of 10 close binary systems:V376 And, EL Aqr, EF Boo, DN Cam, FN Cam, V776 Cas, SX Crv, V351 Peg, EQTau, and KZ Vir. All systems are double-lined, spectroscopic contactbinaries (KZ Vir may be a low-inclination, close, noncontact binary),with seven (all except EL Aqr, SX Crv, and EQ Tau) being the recentphotometric discoveries of the Hipparcos project. The most interestingobject is SX Crv, a contact system with an unprecedented low mass ratio,q=0.066+/-0.003, whose existence challenges the current theory of tidalstability of contact systems. Several of the studied systems are primecandidates for combined light and radial velocity synthesis solutions.Based on data obtained at the David Dunlap Observatory, University ofToronto.
| Stars with the Largest Hipparcos Photometric Amplitudes A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.
| The 74th Special Name-list of Variable Stars We present the Name-list introducing GCVS names for 3153 variable starsdiscovered by the Hipparcos mission.
| Astrometric study of four visual binaries. Abstract image available at:http://adsabs.harvard.edu/abs/1974AJ.....79..819H
|
Új cikk hozzáadása
Kapcsolódó hivatkozások
- - (nincs kapcsolódó hivatkozás) -
Új link hozzáadása
Besorolás csoportokba:
|
Pozíciós és asztrometriai adatok
Csillagkép: | Zsiráf |
Rektaszcenzió: | 09h22m58.04s |
Deklináció: | +77°13'10.9" |
Vizuális fényesség: | 8.653 |
Távolság: | 276.243 parszek |
RA sajátmozgás: | -5.5 |
Dec sajátmozgás: | -29.8 |
B-T magnitude: | 9.104 |
V-T magnitude: | 8.691 |
Katalógusok és elnevezések:
|