בית     התחל מכאן     To Survive in the Universe    
Inhabited Sky
    News@Sky     תמונת אסטרו     האוסף     קבוצת דיון     Blog New!     שאלות נפוצות     עיתונות     כניסה  

TYC 3699-2124-1


תוכן

תמונות

הוסף תמונה שלך

DSS Images   Other Images


מאמרים קשורים

Spectroscopic binaries among Hipparcos M giants. II. Binary frequency
Context: This paper is the second in a series devoted to studying theproperties of binaries with M giant primaries. Aims: The binaryfrequency of field M giants is derived and compared with the binaryfraction of K giants. Methods: Diagrams of the CORAVELspectroscopic parameter Sb (measuring the average line width) vs.radial-velocity standard deviation for our samples were used to defineappropriate binarity criteria. These then served to extract the binarityfraction among the M giants. Comparison is made to earlier data on Kgiant binarity frequency. The Sb parameter is discussed in relation toglobal stellar parameters, and the Sb vs. stellar radius relation isused to identify fast rotators. Results: We find that thespectroscopic binary detection rate among field M giants, in a samplewith few velocity measurements (~2), unbiased toward earlier knownbinaries, is 6.3%. This is less than half of the analogous rate forfield K giants. This difference originates in the greater difficulty offinding binaries among M giants because of their smaller orbitalvelocity amplitudes and larger intrinsic jitter and in the differentdistributions of K and M giants in the eccentricity-period diagram. Ahigher detection rate was obtained in a smaller M giant sample with moreradial velocity measurements per object: 11.1% confirmed plus 2.7%possible binaries. The CORAVEL spectroscopic parameter Sb was found tocorrelate better with the stellar radius than with either luminosity oreffective temperature separately. Two outliers of the Sb vs. stellarradius relation, HD 190658 and HD 219654, have been recognised as fastrotators. The rotation is companion-induced, as both objects turn out tobe spectroscopic binaries.Based on observations carried out at the Swiss telescope installed atthe Observatoire de Haute Provence (OHP, France), and at the 1.93-m OHPtelescope.

On the Formation of Perseus OB1 at High Galactic Latitudes
The Per OB1 association, which contains the remarkable double cluster hand χ Per, is unusual in not having a giant molecular cloud in itsvicinity. We show from Hipparcos data that the luminous members of thisassociation exhibit a bulk motion away from the Galactic plane, suchthat their average velocity increases with height above the Galacticplane. We find HAeBe and T Tauri stars toward probable remnant molecularclouds associated with Per OB1. These star-forming regions lie wellbeyond the location of the luminous member stars at heights of 280-400pc above the Galactic plane, far higher than that previously found forembedded clusters. We argue that the observed motion of the luminousmember stars is most naturally explained if many formed from moleculargas pushed and accelerated outward by an expanding superbubble, drivenpresumably by stellar winds and perhaps also by supernova explosions. Alarge shell of atomic hydrogen gas and dust that lies just beyond theremnant molecular clouds, believed to be driven by just such asuperbubble, may comprise the swept-up remains of the parental giantmolecular cloud from which this association formed. In support of thispicture, we find a weak trend for the younger O star members to lie athigher Galactic latitudes than the older supergiant members. Thestar-forming regions located at even larger heights above the Galacticplane presumably correspond to more recent episodes of star formation ator near the periphery of this superbubble.

Proper-motion binaries in the Hipparcos catalogue. Comparison with radial velocity data
Context: .This paper is the last in a series devoted to the analysis ofthe binary content of the Hipparcos Catalogue. Aims: .Thecomparison of the proper motions constructed from positions spanning ashort (Hipparcos) or long time (Tycho-2) makes it possible to uncoverbinaries with periods of the order of or somewhat larger than the shorttime span (in this case, the 3 yr duration of the Hipparcos mission),since the unrecognised orbital motion will then add to the propermotion. Methods: .A list of candidate proper motion binaries isconstructed from a carefully designed χ2 test evaluatingthe statistical significance of the difference between the Tycho-2 andHipparcos proper motions for 103 134 stars in common between the twocatalogues (excluding components of visual systems). Since similar listsof proper-motion binaries have already been constructed, the presentpaper focuses on the evaluation of the detection efficiency ofproper-motion binaries, using different kinds of control data (mostlyradial velocities). The detection rate for entries from the NinthCatalogue of Spectroscopic Binary Orbits (S_B^9) is evaluated, as wellas for stars like barium stars, which are known to be all binaries, andfinally for spectroscopic binaries identified from radial velocity datain the Geneva-Copenhagen survey of F and G dwarfs in the solarneighbourhood. Results: .Proper motion binaries are efficientlydetected for systems with parallaxes in excess of ~20 mas, and periodsin the range 1000-30 000 d. The shortest periods in this range(1000-2000 d, i.e., once to twice the duration of the Hipparcos mission)may appear only as DMSA/G binaries (accelerated proper motion in theHipparcos Double and Multiple System Annex). Proper motion binariesdetected among S_B9 systems having periods shorter than about400 d hint at triple systems, the proper-motion binary involving acomponent with a longer orbital period. A list of 19 candidate triplesystems is provided. Binaries suspected of having low-mass(brown-dwarf-like) companions are listed as well. Among the 37 bariumstars with parallaxes larger than 5 mas, only 7 exhibit no evidence forduplicity whatsoever (be it spectroscopic or astrometric). Finally, thefraction of proper-motion binaries shows no significant variation amongthe various (regular) spectral classes, when due account is taken forthe detection biases.Full Table [see full textsee full text] is only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/464/377

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Statistical Constraints for Astrometric Binaries with Nonlinear Motion
Useful constraints on the orbits and mass ratios of astrometric binariesin the Hipparcos catalog are derived from the measured proper motiondifferences of Hipparcos and Tycho-2 (Δμ), accelerations ofproper motions (μ˙), and second derivatives of proper motions(μ̈). It is shown how, in some cases, statistical bounds can beestimated for the masses of the secondary components. Two catalogs ofastrometric binaries are generated, one of binaries with significantproper motion differences and the other of binaries with significantaccelerations of their proper motions. Mathematical relations betweenthe astrometric observables Δμ, μ˙, and μ̈ andthe orbital elements are derived in the appendices. We find a remarkabledifference between the distribution of spectral types of stars withlarge accelerations but small proper motion differences and that ofstars with large proper motion differences but insignificantaccelerations. The spectral type distribution for the former sample ofbinaries is the same as the general distribution of all stars in theHipparcos catalog, whereas the latter sample is clearly dominated bysolar-type stars, with an obvious dearth of blue stars. We point outthat the latter set includes mostly binaries with long periods (longerthan about 6 yr).

Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters
The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}

Automated Classification of 2000 Bright IRAS Sources
An artificial neural network (ANN) scheme has been employed that uses asupervised back-propagation algorithm to classify 2000 bright sourcesfrom the Calgary database of Infrared Astronomical Satellite (IRAS)spectra in the region 8-23 μm. The database has been classified into17 predefined classes based on the spectral morphology. We have beenable to classify over 80% of the sources correctly in the firstinstance. The speed and robustness of the scheme will allow us toclassify the whole of the Low Resolution Spectrometer database,containing more than 50,000 sources, in the near future.

Observations of Star-Forming Regions with the Midcourse Space Experiment
We have imaged seven nearby star-forming regions, the Rosette Nebula,the Orion Nebula, W3, the Pleiades, G300.2-16.8, S263, and G159.6-18.5,with the Spatial Infrared Imaging Telescope on the Midcourse SpaceExperiment (MSX) satellite at 18" resolution at 8.3, 12.1, 14.7, and21.3 μm. The large angular scale of the regions imaged (~7.2-50deg2) makes these data unique in terms of the combination ofsize and resolution. In addition to the star-forming regions, twocirrus-free fields (MSXBG 160 and MSXBG 161) and a field near the southGalactic pole (MSXBG 239) were also imaged. Point sources have beenextracted from each region, resulting in the identification over 500 newsources (i.e., no identified counterparts at other wavelengths), as wellas over 1300 with prior identifications. The extended emission from thestar-forming regions is described, and prominent structures areidentified, particularly in W3 and Orion. The Rosette Nebula isdiscussed in detail. The bulk of the mid-infrared emission is consistentwith that of photon-dominated regions, including the elephant trunkcomplex. The central clump, however, and a line of site toward thenorthern edge of the cavity show significantly redder colors than therest of the Rosette complex.

The association of IRAS sources and 12CO emission in the outer Galaxy
We have revisited the question of the association of CO emission withIRAS sources in the outer Galaxy using data from the FCRAO Outer GalaxySurvey (OGS). The availability of a large-scale high-resolution COsurvey allows us to approach the question of IRAS-CO associations from anew direction - namely we examined all of the IRAS sources within theOGS region for associated molecular material. By investigating theassociation of molecular material with random lines of sight in the OGSregion we were able to construct a quantitative means to judge thelikelihood that any given IRAS-CO association is valid and todisentangle multiple emission components along the line of sight. Thepaper presents a list of all of the IRAS-CO associations in the OGSregion. We show that, within the OGS region, there is a significantincrease ( ~ 22%) in the number of probable star forming regions overprevious targeted CO surveys towards IRAS sources. As a demonstration ofthe utility of the IRAS-CO association table we present the results ofthree brief studies on candidate zone-of-avoidance galaxies with IRAScounterparts, far outer Galaxy CO clouds, and very bright CO clouds withno associated IRAS sources. We find that ~ 25% of such candidate ZOAGsare Galactic objects. We have discovered two new far outer Galaxystar-forming regions, and have discovered six bright molecular cloudsthat we believe are ideal targets for the investigation of the earlieststages of sequential star formation around HII regions. Finally, thispaper provides readers with the necessary data to compare othercatalogued data sets with the OGS data.Tables 1, 2 and A1 are only available in electronic form at the CDS viaanonymous ftp to\ cdsarc.u-strasbg.fr (130.79.128.5) or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/399/1083

Hipparcos red stars in the HpV_T2 and V I_C systems
For Hipparcos M, S, and C spectral type stars, we provide calibratedinstantaneous (epoch) Cousins V - I color indices using newly derivedHpV_T2 photometry. Three new sets of ground-based Cousins V I data havebeen obtained for more than 170 carbon and red M giants. These datasetsin combination with the published sources of V I photometry served toobtain the calibration curves linking Hipparcos/Tycho Hp-V_T2 with theCousins V - I index. In total, 321 carbon stars and 4464 M- and S-typestars have new V - I indices. The standard error of the mean V - I isabout 0.1 mag or better down to Hp~9 although it deteriorates rapidly atfainter magnitudes. These V - I indices can be used to verify thepublished Hipparcos V - I color indices. Thus, we have identified ahandful of new cases where, instead of the real target, a random fieldstar has been observed. A considerable fraction of the DMSA/C and DMSA/Vsolutions for red stars appear not to be warranted. Most likely suchspurious solutions may originate from usage of a heavily biased color inthe astrometric processing.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA 1997).}\fnmsep\thanks{Table 7 is onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/397/997

New periodic variables from the Hipparcos epoch photometry
Two selection statistics are used to extract new candidate periodicvariables from the epoch photometry of the Hipparcos catalogue. Theprimary selection criterion is a signal-to-noise ratio. The dependenceof this statistic on the number of observations is calibrated usingabout 30000 randomly permuted Hipparcos data sets. A significance levelof 0.1 per cent is used to extract a first batch of candidate variables.The second criterion requires that the optimal frequency be unaffectedif the data are de-trended by low-order polynomials. We find 2675 newcandidate periodic variables, of which the majority (2082) are from theHipparcos`unsolved' variables. Potential problems with theinterpretation of the data (e.g. aliasing) are discussed.

Long period variable stars: galactic populations and infrared luminosity calibrations
In this paper HIPPARCOS astrometric and kinematic data are used tocalibrate both infrared luminosities and kinematical parameters of LongPeriod Variable stars (LPVs). Individual absolute K and IRAS 12 and 25luminosities of 800 LPVs are determined and made available in electronicform. The estimated mean kinematics is analyzed in terms of galacticpopulations. LPVs are found to belong to galactic populations rangingfrom the thin disk to the extended disk. An age range and a lower limitof the initial mass is given for stars of each population. A differenceof 1.3 mag in K for the upper limit of the Asymptotic Giant Branch isfound between the disk and old disk galactic populations, confirming itsdependence on the mass in the main sequence. LPVs with a thin envelopeare distinguished using the estimated mean IRAS luminosities. The levelof attraction (in the classification sense) of each group for the usualclassifying parameters of LPVs (variability and spectral types) isexamined. Table only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/374/968 or via ASTRIDdatabase (http://astrid.graal.univ-montp2.fr).

Dust features in the 10-mu m infrared spectra of oxygen-rich evolved stars
We have analyzed the 8-13.5 mu m UKIRT CGS3 spectra of 142 M-type starsincluding 80 oxygen-rich AGB stars and 62 red supergiants, with a viewto understanding the differences and similarities between the dustfeatures of these stars. We have classified the spectra into groupsaccording to the observed appearance of the infrared features. In eachcase the normalized continuum-subtracted spectrum has been compared tothose of the other stars to find similarities and form groups. The dustfeatures of the AGB stars are classified into six groups: broad AGB,where the feature extends from 8 mu m to about 12.5 mu m with littlestructure; broad+sil AGB, which consists of a broad feature with anemerging 9.7 mu m silicate bump; and four silicate AGB groups in which a``classic'' 9.7 mu m silicate feature gets progressively narrower.Likewise, the supergiant spectra have also been classified into groups,however these do not all coincide with the AGB star groups. In thesupergiant case we again have six groups: featureless, where there islittle or no emission above the continuum; broad Super, where thefeature extends from about 9 mu m to about 13 mu m; and four silicateSuper groups, which again show a progression towards the narrowest``classic'' 9.7 mu m silicate feature. We compare the mean spectrum foreach group, which yields two main results. Firstly, while the``classic'' silicate feature is essentially identical for both AGB starsand red supergiants, the broad features observed for these two stellartypes are quite different. We suggest that the dust in these twoenvironments follows different evolutionary paths, with the dust aroundMira stars, whose broad feature spectra can be fit by a combination ofalumina (Al2O3) and magnesium silicate,progressing from this composition to dust dominated by magnesiumsilicate only, while the dust around supergiants, whose broad featurecan be fit by a combination of Ca-Al-rich silicate andAl2O3, progresses from this initial composition toone eventually also dominated by magnesium silicate. The reason for thedifference in the respective broad features is not clear as yet, butcould be influenced by lower C/O ratios and chromospheric UV radiationfields in supergiant outflow environments. The second result concernsthe 12.5 - 13.0 mu m feature discovered in IRAS LRS spectra and widelyattributed to Al2O3. This feature is seenpredominantly in the spectra of semiregular variables, sometime in Mirasand only once (so far) in supergiant spectra. We argue that it isunlikely that this feature is due to Al2O3 or, ashas more recently been suggested, spinel(MgAl2O4), but could be associated with silicondioxide or highly polymerized silicates (not pyroxenes or olivines).

Observational investigation of mass loss of M supergiants
We present the analysis of infrared photometry and millimeterspectroscopy of a sample of 74 late-type supergiants. These observationsare particularly suitable to study the mass loss and the circumstellarenvelopes of evolved massive stars. In particular, we quantify thecircumstellar infrared excess, the relation of mass loss with stellarproperties, using the K-[12] colour index as mass-loss indicator. We donot find any clear correlation between mass loss rate and luminosity. Wealso show that the K-band magnitude is a simple luminosity indicator,because of the relative constancy of the K-band bolometric correction.Based on observations collected at the European Southern Observatory, LaSilla, Chile within program ESO 54.E-0914, and on observations collectedwith the IRAM 30m telescope. Tables A1 to A3 are only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

Period-luminosity relations for red supergiant variables - I.The calibration
We present CCD photometry of red supergiant long-period variables (LPVs)in the Per OB1 association, the Large Magellanic Cloud (LMC) and M33.The photometry was obtained in the Kron-Cousins R and I bandpasses andin a narrow bandpass (λ0=8250Å, FWHM=300Å)chosen to avoid TiO bands in the spectral energy distribution of theLPVs. Because the strength of the TiO bands varies greatly withtemperature, which varies with the phase of an LPV, avoiding TiO reducesthe amplitude of the photometric variations seen in LPVs. The result isa lower dispersion and a well defined period-luminosity (PL) relation.For the LMC sample we find an rms dispersion of 0.27mag in thenarrow-band PL relation and slightly larger dispersions for the LPVs inPer OB1 and M33. This dispersion is comparable to that of the Cepheid PLrelation at similar wavelengths. Adopting a distance modulus of18.5+/-0.1mag for the LMC, we obtain distance moduli of 11.68+/-0.15magfor Per OB1 and 24.85+/-0.13mag for M33. These distances agree well withthose based on main sequence fitting for Per OB1 and the Cepheiddistance for M33. Since LPVs are ~5 times more common than Cepheids andhave a well defined PL relation, LPVs provide a promising method forestimating Galactic and extra galactic distances.

Silicate and hydrocarbon emission from Galactic M supergiants
Following our discovery of unidentified infrared (UIR) band emission ina number of M supergiants in h and chi Per, we have obtained 10-μmspectra of a sample of 60 galactic M supergiants. Only three newsources, V1749 Cyg, UW Aql and IRC+40 427, appear to show the UIR bands;the others show the expected silicate emission or a featurelesscontinuum. The occurrence of UIR-band emission in M supergiants istherefore much higher in the h and chi Per cluster than in the Galaxy asa whole. Possible explanations for the origin and distribution of UIRbands in oxygen-rich supergiants are discussed. We use our spectra toderive mass-loss rates ranging from 10^-8 to 10^-4 M_solar yr^-1 for thenew sample, based on the power emitted in the silicate feature. Therelationship between mass-loss rate and luminosity for M supergiants isdiscussed, and correlations are explored between their mid-infraredemission properties.

Classification and Identification of IRAS Sources with Low-Resolution Spectra
IRAS low-resolution spectra were extracted for 11,224 IRAS sources.These spectra were classified into astrophysical classes, based on thepresence of emission and absorption features and on the shape of thecontinuum. Counterparts of these IRAS sources in existing optical andinfrared catalogs are identified, and their optical spectral types arelisted if they are known. The correlations between thephotospheric/optical and circumstellar/infrared classification arediscussed.

Red supergiants, neutrinos and the Double Cluster
The Perseus Double Cluster is surrounded by one of the largestconcentrations of red supergiant stars in the sky. As a consequence, thedevelopment of our understanding of the structure and evolution of thesestars has been intimately connected with studies of this cluster. Thispaper traces the history of this connection from the end of the 19thcentury through to the early 1970s.

An Infrared Color-Magnitude Relationship
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995AJ....110.2910H&db_key=AST

Galactic OB associations in the northern Milky Way Galaxy. I - Longitudes 55 deg to 150 deg
The literature on all OB associations was reviewed, and their IRAS pointsource content was studied, between galactic longitude 55 and 150 deg.Only one third of the 24 associations listed by Ruprecht et al. (1981)have been the subject of individual studies designed to identify thebrightest stars. Distances to all of these were recomputed using themethod of cluster fitting of the B main sequence stars, which makes itpoossible to reexamine the absolute magnitude calibration of the Ostars, as well as for the red supergiant candidate stars. Also examinedwas the composite HR diagram for these associations. Associations withthe best defined main sequences, which also tend to contain very youngclusters, referred to here as OB clusters, have extremely few evolved Band A or red supergiants. Associations with poorly defined mainsequences and few OB clusters have many more evolved stars. They alsoshow an effect in the upper HR diagram referred to as a ledge byFitzpatrick and Garmany (1990) in similar data for the Large MagellanicCloud. It is suggested that the differences in the associations are notjust observational selection effects but represent real differences inage and formation history.

Mass-losing M supergiants in the solar neighborhood
A list of the 21 mass-losing red supergiants (20 M type, one G type; Lgreater than 100,000 solar luminosities) within 2.5 kpc of the sun iscompiled. These supergiants are highly evolved descendants ofmain-sequence stars with initial masses larger than 20 solar masses. Thesurface density is between about 1 and 2/sq kpc. As found previously,these stars are much less concentrated toward the Galactic center thanW-R stars, which are also highly evolved massive stars. Although withconsiderable uncertainty, it is estimated that the mass return by the Msupergiants is somewhere between 0.00001 and 0.00003 solar mass/sq kpcyr. In the hemisphere facing the Galactic center there is much less massloss from M supergiants than from W-R stars, but, in the anticenterdirection, the M supergiants return more mass than do the W-R stars. Theduration of the M supergiant phase appears to be between 200,000 and400,000 yr. During this phase, a star of initially at least 20 solarmasses returns perhaps 3-10 solar masses into the interstellar medium.

Statistical characteristics of the ten-micron silicate emission in M-type stars
The statistical characteristics of 10 micron silicate emission wereexamined for 1427 M-type stars in the catalog of the Two-Micron SkySurvey using the low-resolution spectra obtained by IRAS. Correlationswere examined of 10 micron silicate emission with the spectralclassification in the visual wavelength region, with near-infrared colorI - K, with a variability type, and with the period of variation. It wasfound that supergiants show silicate emission more frequently than dogiants. Silicate emission was found in stars of all three variabilitytypes: irregular, semiregular, and Mira variables. The proportion ofstars with silicate emission was found to be larger for Mira variables.Most of the Mira variables with periods of variation longer than about450 d were found to show silicate emission.

Infrared circumstellar shells - Origins, and clues to the evolution of massive stars
The infrared fluxes, spatial and spectral characteristics for a sampleof 111 supergiant stars of spectral types F0 through M5 are tabulated,and correlations examined with respect to the nature of theircircumstellar envelopes. One-fourth of these objects were spatialyresolved by IRAS at 60 microns and possess extended circumstellar shellmaterial, with implied expansion ages of about 10 to the 5th yr.Inferences about the production of dust, mass loss, and the relation ofthese characteristics of the evolution of massive stars, are discussed.

Circumstellar environments. III - M-supergiants
Spectra of M-supergiants in the 7-100-micron region are studied. Thecircumstellar silicate dust features at 9.7 and 18 microns are found tobe of variable width. Although most stars are shown to exhibit theclassical circumstellar silicate dust features typified by those ofAlpha Ori, some, such as VX SGr, exhibit much broader features.Mass-loss rates are given for 31 M-supergiants.

The cool components of symbiotic stars. II - Infrared photometry
This paper reports IR photometry for a sample of symbiotic binaries andK-M comparison stars. Measured CO absorption-band strengths of the coolcomponents in symbiotic stars generally are comparable to those ofsingle red giant and bright giant stars, but it is difficult todetermine the luminosity classes of these objects from their photometricCO indices. The 12-micron excesses observed in symbiotics require theircool components to lose mass more rapidly than do single red giantstars. Thus, mass-loss rates derived for red giants in close binarysystems may not be accurate estimates for mass loss in single redgiants.

The cool components of symbiotic stars. I - Optical spectral types
An analysis of prominent absorption features on red spectra of symbioticstars is presented. The depths of TiO and VO bands appear to becorrelated with the brightness of the system; this behavior is probablythe result of the secondary star heating the outer atmosphere of thecool giant. New spectral types and luminosity classes for the coolcomponents of symbiotics are derived, and these classifications suggesta division into semidetached systems and detached systems. Mass-lossrates for detached symbiotics, which do not contain Mira variables,remain higher than those estimated for single red giants of the samespectral type, suggesting that the presence of a binary companionenhances mass loss in these objects.

IRAS catalogues and atlases - Atlas of low-resolution spectra
Plots of all 5425 spectra in the IRAS catalogue of low-resolutionspectra are presented. The catalogue contains the average spectra ofmost IRAS poiont sources with 12 micron flux densities above 10 Jy.

Determination of the interstellar component in the linear polarization of the light of red supergiants
Not Available

Dependence of the degree of polarization of the light of cold supergiants on the I-K color
Not Available

M supergiants in the Milky Way and the Magellanic Clouds Colors, spectral types, and luminosities
The differences in metal abundances between the Milky Way, LargeMagellanic Cloud (LMC), and Small Magellanic Cloud (SMC) affect most ofthe observable properties of the M supergiants in these galaxies; thosein the SMC (which has the lowest metal abundance) have the earliest meanspectral type, while those of the Milky Way exhibit the latest meanspectral type. This is presently interpreted as a combination of twoeffects of differing metal abundance on the supergiant atmospheres:first, lower abundance stars of a given effective temperature haveearlier MK spectral types due to reduced TiO abundance; second, theHayashi track is shifted to hotter effective temperature at reducedmetal abundance, thereby shifting the mean spectral type still earlier.The fact that the 10-micron excess decreases linearly with metalabundance suggests that mass loss rates are roughly the same for starsin all three galaxies, with the dust-to-gas ratio proportional to metalabundance.

הכנס מאמר חדש


לינקים קשורים

  • - לא נמצאו לינקים -
הכנס לינק חדש


משמש של הקבוצה הבאה


תצפית ומידע אסטרומטרי

קבוצת-כוכבים:קאסיופיאה
התרוממות ימנית:02h39m50.43s
סירוב:+59°35'51.3"
גודל גלוי:9.593
תנועה נכונה:-4.3
תנועה נכונה:0.4
B-T magnitude:13.758
V-T magnitude:9.937

קטלוגים וכינוים:
שם עצם פרטי   (Edit)
TYCHO-2 2000TYC 3699-2124-1
USNO-A2.0USNO-A2 1425-03715230
HIPHIP 12416

→ הזמן עוד קטלוגים וכינוים מוזיר