Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

HD 276861


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

A new calibration of Galactic Cepheid period-luminosity relations from B to K bands, and a comparison to LMC relations
Context: The universality of the Cepheid period-luminosity (PL)relations has been under discussion since metallicity effects wereassumed to play a role in the value of the intercept and, more recently,of the slope of these relations. Aims: The goal of the present study isto calibrate the Galactic PL relations in various photometric bands(from B to K) and to compare the results to the well-established PLrelations in the LMC. Methods: We use a set of 59 calibrating stars,the distances of which are measured using five different distanceindicators: Hubble Space Telescope and revised Hipparcos parallaxes,infrared surface brightness and interferometric Baade-Wesselinkparallaxes, and classical Zero-Age-Main-Sequence-fitting parallaxes forCepheids belonging to open clusters or OB stars associations. A detaileddiscussion of absorption corrections and projection factor to be used isgiven. Results: We find no significant difference in the slopes of thePL relations between LMC and our Galaxy. Conclusions: We conclude thatthe Cepheid PL relations have universal slopes in all photometric bands,not depending on the galaxy under study (at least for LMC and MilkyWay). The possible zero-point variation with metal content is notdiscussed in the present work, but an upper limit of 18.50 for the LMCdistance modulus can be deduced from our data.Tables 2, 6 and 7 are only available in electronic form athttp://www.aanda.org

The reliability of Cepheid reddenings based on BVIC photometry
Externally determined values of E(B - V) (Espacered) for 40Galactic Cepheids are compared to reddenings determined using B - V andV - IC colour indices and the method of Dean, Warren &Cousins (EBVIC), updated to allow for metallicitycorrections. With three stars omitted on the grounds of uncertainty intheir space reddenings, we find thatThe two scales agree well in scale and zero-point, and there is nosignificant trend with period. Given the non-zero errors in the Cepheidspace reddenings, the estimated error in BVIC Cepheidreddenings is no more than 0.02.The above results are not significantly changed whether one corrects thereddenings for metallicity using older Bell models, or using more recentmodels by Sandage, Bell & Tripicco. Using the SBT models to correctthe reddenings of Cloud Cepheids for metallicity gives slightly smallerreddenings at a given metal deficiency, yielding `new' median reddeningsof 0.056 (Small Magellanic Cloud) and 0.076 (Large Magellanic Cloud) ifwe assume the same metal deficiencies as Caldwell and Coulson. Withmetal deficiencies of [M/H] = -0.7 and -0.25, the median reddenings are0.040 and 0.058.

The Distribution of the Elements in the Galactic Disk
This paper reports on the spectroscopic investigation of 54 Cepheids,deriving parameters and abundances. These Cepheids extend previoussamples by about 35% in number and increase the amount of the Galacticdisk coverage, especially in the direction of l~120deg. Wefind that there exists in the Galactic disk at that longitude and at asolar distance of about 3-4 kpc a region that has enhanced abundances,~+0.2, with respect to the local region. A simple linearfit to all Cepheid data now extant yields a gradientd[Fe/H]/dRG=-0.068+/-0.003 dex kpc-1. Afterconsideration of the spatial abundance inhomogeneities in the sample, weconclude that the best current estimate of the overall gradient isd[Fe/H]/dRG=-0.06 dex kpc-1.

Cepheidenbeobachtung in der BAV: Ruckblick und Ausblick.
Not Available

Beobachtungsergebnisse Bundesdeutsche Arbeitsgemeinschaft fur Veranderlichen Serne e.V.
Not Available

New Period-Luminosity and Period-Color relations of classical Cepheids: I. Cepheids in the Galaxy
321 Galactic fundamental-mode Cepheids with good B, V, and (in mostcases) I photometry by Berdnikov et al. (\cite{Berdnikov:etal:00}) andwith homogenized color excesses E(B-V) based on Fernie et al.(\cite{Fernie:etal:95}) are used to determine their period-color (P-C)relation in the range 0.4~ 1.4). The latter effect is enhanced by asuggestive break of the P-L relation of LMC and SMC at log P = 1.0towards still shallower values as shown in a forthcoming paper.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/423

Metallicity effects on classical Cepheids: Velocity curve morphology of outer disc Cepheids
We present new radial velocity data for eleven classical Cepheidssituated in the outer parts of the Galactic disc. The resultant velocitycurves for these metal-deficient Cepheids are decomposed in Fourierparameters, and compared to solar-metallicity Cepheid data, in order tostudy the effect of metallicity on the pulsation properties. Up to P =~8 days, the phi 21 phase shift is found to follow veryclosely the corresponding sequence for solar-metallicity Cepheids,indicating the absence of metallicity effects on phi 21 forlow periods. However, metal-deficient Cepheids show a slightly largerA1 amplitude and R21 amplitude ratio for P<5days. At P>12 days, there is some evidence that the phi 21phase shift is significantly larger for metal-deficient Cepheids than atsolar metallicity. A posteriori, this effect is also detected inphotometric data for outer disc and LMC Cepheids in the 12-20 day periodrange. In good qualitative agreement with the predictions of theoreticalpulsation models, we therefore see some indication of a metallicitydependence of the P2/P0 resonance properties. Thelargest effects on velocity curve shape are expected in the crucial 8-12day period range - around the P2/P0 resonance forfundamental-mode Cepheids - that is not covered by our data. Possibletargets for future measurements are suggested to fill this gap, and toimprove the quantitative determination of metallicity effects on thestructural properties of Cepheid velocity curves. Based on observationscollected at the European Southern Observatory (La Silla, Chile) and atthe Observatoire de Haute-Provence (France).

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

Galactic Cepheids. Catalogue of light-curve parameters and distances
We report a new version of the catalogue of distances and light-curveparameters for Galactic classical Cepheids. The catalogue listsamplitudes, magnitudes at maximum light, and intensity means for 455stars in BVRI filters of the Johnson system and (RI)_C filters of theCron-Cousins system. The distances are based on our new multicolour setof PL relations and on our Cepheid-based solution for interstellarextinction law parameters and are referred to an LMC distance modulus of18.25. The catalogue is only available in electronic form at the CDS viaanonymous ftp (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Multi-colour PL-relations of Cepheids in the bt HIPPARCOS catalogue and the distance to the LMC
We analyse a sample of 236 Cepheids from the hipparcos catalog, usingthe method of ``reduced parallaxes'' in V, I, K and the reddening-free``Wesenheit-index''. We compare our sample to those considered by Feast& Catchpole (1997) and Lanoix et al. (1999), and argue that oursample is the most carefully selected one with respect to completeness,the flagging of overtone pulsators, and the removal of Cepheids that mayinfluence the analyses for various reasons (double-mode Cepheids,unreliable hipparcos solutions, possible contaminated photometry due tobinary companions). From numerical simulations, and confirmed by theobserved parallax distribution, we derive a (vertical) scale height ofCepheids of 70 pc, as expected for a population of 3-10 Msunstars. This has consequences for Malmquist- and Lutz-Kelker (Lutz &Kelker 1973, Oudmaijer et al. 1998) type corrections which are smallerfor a disk population than for a spherical population. The V and I datasuggest that the slope of the Galactic PL-relations may be shallowerthan that observed for LMC Cepheids, either for the whole period range,or that there is a break at short periods (near log P_0 ~ 0.7-0.8). Westress the importance of two systematic effects which influence thedistance to the LMC: the slopes of the Galactic PL-relations andmetallicity corrections. In order to assess the influence of thesevarious effects, we present 27 distance moduli (DM) to the LMC. Theseare based on three different colours (V,I,K), three different slopes(the slope observed for Cepheids in the LMC, a shallower slope predictedfrom one set of theoretical models, and a steeper slope as derived forGalactic Cepheids from the surface-brightness technique), and threedifferent metallicity corrections (no correction as predicted by one setof theoretical models, one implying larger DM as predicted by anotherset of theoretical models, and one implying shorter DM based onempirical evidence). We derive DM between 18.45 +/- 0.18 and 18.86 +/-0.12. The DM based on K are shorter than those based on V and I andrange from 18.45 +/- 0.18 to 18.62 +/- 0.19, but the DM in K could besystematically too low by about 0.1 magnitude because of a bias due tothe fact that NIR photometry is available only for a limited number ofstars. From the Wesenheit-index we derive a DM of 18.60 +/- 0.11,assuming the observed slope of LMC Cepheids and no metallicitycorrection, for want of more information. The DM to the LMC based on theparallax data can be summarised as follows. Based on the PL-relation inV and I, and the Wesenheit-index, the DM is 18.60 ± 0.11(± 0.08 slope)(^{+0.08}_{-0.15} ;metallicity), which is ourcurrent best estimate. Based on the PL-relation in K the DM is ;;;;18.52 +/- 0.18 (± 0.03 ;slope) (± 0.06 ;metallicity)(^{+0.10}_{-0} ;sampling ;bias). The random error is mostly due to thegiven accuracy of the hipparcos parallaxes and the number of Cepheids inthe respective samples. The terms between parentheses indicate thepossible systematic uncertainties due to the slope of the GalacticPL-relations, the metallicity corrections, and in the K-band, due to thelimited number of stars. Recent work by Sandage et al. (1999) indicatesthat the effect of metallicity towards shorter distances may be smallerin V and I than indicated here. From this, we point out the importanceof obtaining NIR photometry for more (closeby) Cepheids, as for themoment NIR photometry is only available for 27% of the total sample.This would eliminate the possible bias due to the limited number ofstars, and would reduce the random error estimate from 0.18 to about0.10 mag. Furthermore, the sensitivity of the DM to reddening,metallicity correction and slope are smallest in the K-band. Based ondata from the ESA HP astrometry satellite.

Direct calibration of the Cepheid period-luminosity relation
After the first release of Hipparcos data, Feast & Catchpole gave anew value for the zero-point of the visual Cepheid period-luminosityrelation, based on trigonometric parallaxes. Because of the largeuncertainties on these parallaxes, the way in which individualmeasurements are weighted is of crucial importance. We thereforeconclude that the choice of the best weighting system can be aided by aMonte Carlo simulation. On the basis of such a simulation, it is shownthat (i) a cut-off in π or in σ_ππ introduces a strongbias; (ii) the zero-point is more stable when only the brightestCepheids are used; and (iii) the Feast & Catchpole weighting givesthe best zero-point and the lowest dispersion. After correction, theadopted visual period-luminosity relation is=-2.77logP-1.44+/-0.05. Moreover, we extend this study to thephotometric I band (Cousins) and obtain=-3.05logP-1.81+/-0.09.

I- and JHK-band photometry of classical Cepheids in the HIPPARCOS catalog
By correlating the \cite[Fernie et al. (1995)]{F95} electronic databaseon Cepheids with the ``resolved variable catalog'' of the hipparcosmission and the simbad catalog one finds that there are 280 Cepheids inthe hipparcos catalog. By removing W Vir stars (Type ii Cepheids),double-mode Cepheids, Cepheids with an unreliable solution in thehipparcos catalog, and stars without photometry, it turns out that thereare 248 classical Cepheids left, of which 32 are classified asfirst-overtone pulsators. For these stars the literature was searchedfor I-band and near-infrared data. Intensity-mean I-band photometry onthe Cousins system is derived for 189 stars, and intensity-mean JHK dataon the Carter system is presented for 69 stars.

UVBY beta Photometric Data and Fourier Coefficients for Galactic Population I and Population II Cepheids
Photometric data in the uvby beta system are presented for a sample of98 Population I Cepheids and seven W Virginis or Population II Cepheids.The importance of the Fourier decomposition technique in the study ofthe structure of pulsating stars is stressed. Mean values and Fourierdecomposition coefficients for the V, b - y, m1, and c1 variations arecalculated. Also, mean values of H beta are provided. New times ofmaximum V light are reported for the majority of the stars in thesample. Significant shifts of the light and color curves were found insome Cepheids; these are explained by their period variations. Thesestars are highlighted in the text.

The shape and scale of Galactic rotation from Cepheid kinematics
A catalog of Cepheid variables is used to probe the kinematics of theGalactic disk. Radial velocities are measured for eight distant Cepheidstoward l = 300 deg; these new Cepheids provide a particularly goodconstraint on the distance to the Galactic center, R0. We model the diskwith both an axisymmetric rotation curve and one with a weak ellipticalcomponent, and find evidence for an ellipticity of 0.043 +/- 0.016 nearthe sun. Using these models, we derive R0 = 7.66 +/- 0.32 kpc andv(circ) = 237 +/- 12 km/s. The distance to the Galactic center agreeswell with recent determinations from the distribution of RR Lyraevariables and disfavors most models with large ellipticities at thesolar orbit.

A catalog of Cepheid radial velocities measured in 1995-1998 with the correlation spectrometer.
Not Available

Monitoring the Evolution of Cepheid Variables
Described here are preliminary results of a pilot project to monitorchanges in the ephemerides of northern hemisphere Cepheid's using anSBIG camera attached to the 0.4-m telescope of the campus obversatory atSaint Mary's University. Epochs of maximum light for fifteen Cepheid'shave been derived using published light curves for each variable astemplates, and the results are being used to update the O-C ephemeridesfor the program stars. Results for BB Her are presented here. Periodchanges for Cepheid variables are demonstrated to be an excellent meansof pinpointing their evolutionary status, as well as for investigatingother peculiarities of the class.

Galactic kinematics of Cepheids from HIPPARCOS proper motions
The Hipparcos proper motions of 220 Galactic Cepheids, together withrelevant ground-based photometry, have been analyzed. The effects ofGalactic rotation are very clearly seen. Mean values of the Oortconstants, A = 14.82 +/- 0.84 km/s kpc, and B = -12.37 +/- 0.64 km/skpc, and of the angular velocity of circular rotation at the sun, 27.19+/- 0.87 km/s kpc, are derived. A comparison of the value of A withvalues derived from recent radial velocity solutions confirms, withinthe errors, the zero-points of the period-luminosity andperiod-luminosity-color relations derived directly from the Hipparcostrigonometrical parallaxes of the same stars. The proper motion resultssuggest that the Galactic rotation curve is declining slowly at thesolar distance from the Galactic Center (-2.4 +/- 1.2 km/s kpc). Thecomponent of the solar motion towards the North Galactic Pole is foundto be +7.61 +/- 0.64 km/s. Based on the increased distance scale deducedin the present paper, the distance to the Galactic Center derived in aprevious radial velocity study is increased to 8.5 +/- 0.5 kpc.

Cepheid radii and the CORS method revisited.
We have refined the CORS method, introduced in 1980 for the computationof the cepheid radii, in order to extend its applicability to recent andextensive sets of observations. The refinement is based on thecomputation, from observational data only, of one of the terms of thesolving equation, previously based only on precise calibrations ofphotometric colors. A limited number of assumptions, generally acceptedin the literature, is used. New radii are computed for about 70cepheids, and the resulting P-R relation is discussed.

Rotation of the outer disc from classical cepheids.
Radial velocities and distances have been measured for a sample of 48remote classical cepheids located in the outer disc of the Galaxy(118deg

Structural Properties of Pulsating Star Light Curves Through Fuzzy Divisive Hierarchical Clustering
Not Available

On the Automatic Determination of Light-Curve Parameters for Cepheid Variables
A computerized algorithm for the automatic detection of Cepheidvariables and for the estimation of their periods, amplitudes, and meanmagnitudes from sparse data sets is presented. It is intended to besuitable for use in such programs as the measurement of Cepheiddistances to external galaxies, for example with the Hubble SpaceTelescope. The reliability of the algorithm is tested by application tonew photometric reductions of pre-repair HST images of the nearby Sdmgalaxy IC 4182, with comparison to published analyses of the same data(Saha et al. 1994, ApJ, 425, 14). (SECTION: Stars)

Search for resonance effects in long period Cepheids.
Light curves of classical Cepheids with period longer than 8 days havebeen Fourier decomposed with the purpose of studying the characteristicsof high order Fourier parameters, and to detect possible effects ofresonances between pulsation modes other than the well known resonanceat P~10d. The possible effects of two expected resonances have beententatively identified: P_0_/P_1_=3/2 at P_0_~24 d and P_0_/P_3_=3 atP_0_~27d. The identification is not completely certain owing to the poornumber of Cepheids. The limitation could be overcome by observingaccurately other relatively faint Cepheids in our Galaxy, and severalCepheids in nearby galaxies.

Derivation of the Galactic rotation curve using space velocities
We present rotation curves of the Galaxy based on the space-velocitiesof 197 OB stars and 144 classical cepheids, respectively, which rangeover a galactocentric distance interval of about 6 to 12kpc. Nosignificant differences between these rotation curves and rotationcurves based solely on radial velocities assuming circular rotation arefound. We derive an angular velocity of the LSR of{OMEGA}_0_=5.5+/-0.4mas/a (OB stars) and {OMEGA}_0_=5.4+/-0.5mas/a(cepheids), which is in agreement with the IAU 1985 value of{OMEGA}_0_=5.5mas/a. If we correct for probable rotations of the FK5system, the corresponding angular velocities are {OMEGA}_0_=6.0mas/a (OBstars) and {OMEGA}_0_=6.2mas/a (cepheids). These values agree betterwith the value of {OMEGA}_0_=6.4mas/a derived from the VLA measurementof the proper motion of SgrA^*^.

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Rotation Curve of the System of Classical Cepheids and the Distance to the Galactic Center
Not Available

The Henry Draper Extension Charts: A catalogue of accurate positions, proper motions, magnitudes and spectral types of 86933 stars
The Henry Draper Extension Charts (HDEC), published in the form offinding charts, provide spectral classification for some 87000 starsmostly between 10th and 11th magnitude. This data, being highlyvaluable, as yet was practically unusable for modern computer-basedastronomy. An earlier pilot project (Roeser et al. 1991) demonstrated apossibility to convert this into a star catalogue, using measurements ofcartesian coordinates of stars on the charts and positions of theAstrographic Catalogue (AC) for subsequent identification. We presenthere a final HDEC catalogue comprising accurate positions, propermotions, magnitudes and spectral classes for 86933 stars of the HenryDraper Extension Charts.

New radial velocities for classical cepheids. Local galactic rotation revisited
New centre-of-mass radial velocities are calculated for 107 classicalcepheids from CORAVEL observations. We generally determine thesevelocities from four to six measurements carefully spaced in phase, byfitting a "typical" radial velocity curve or the mirror image of thelight curve. A decomposition in Fourier series is used for stars withmore than 10 measurements. Distances are then computed through aperiod-luminosity-colour relation for 278 classical cepheids with knownradial velocity, and an axisymmetric galactic rotation model is appliedto the sample, using a generalised non-linear least square method withuncertainties on both the velocities and the distances. The bestresults, with a rotation curve modelled as a third order polynomial,are: Rsun_=8.09 +/-0.30 kpc, A=15.92 +/-0.34 km/s/kpc, 2ARsun_=257 +/-7 km/s, A2=d^2theta(R)/d R^2^=-3.38+/-0.38 km/s/kpc^2^, A3=d^3theta(R)/d R^3^=1.99 +/-0.62km/s/kpc^3^, u_0_=9.32 +/-0.80 km/s, v_0_=11.18 +/-0.65 km/s. The effectof modifying the distance scale of cepheids, the absorption coefficientor the fitting procedure algorithm are examined. It appears that theproduct 2 A Rsun_ is very robust towards these changes. Theextended sample of classical cepheids with known radial velocitypresented in this paper seems to imply a higher value for A thananterior studies. The radial velocity residuals show a systematic k-termof about 2 km/s. New evidence from cluster cepheids excludes anintrinsic cause for this shift, and a dynamical cause is proposed from acomparison with a N-body simulation of the Galaxy. The simulation showsthat a systematic bias of this magnitude is typical. The structure ofthe local residual velocity field is examined in some detail.

The Cepheid Period-Luminosity Relation from Independent Distances of 100 Galactic Variables
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993ApJ...418..135G&db_key=AST

On the binary status of the Cepheid SV Persei
The blue companion recently identified for the classical Cepheid SV Perhas prompted the present analysis of the Cepheid's radial velocities, insearch of binary motion. CCD radial velocity data have accordingly beenobtained which, in conjunction with previously unpublished measurements,limit a possible systematic variation of the gamma velocity to less than3 km/sec. Although no 3-sigma evidence is found for a systematic changein gamma, neither is there comparable evidence for its constancy.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Persée
Right ascension:04h49m47.94s
Declination:+42°17'23.0"
Apparent magnitude:8.92
Distance:10000000 parsecs
Proper motion RA:-1.2
Proper motion Dec:-2.1
B-T magnitude:10.03
V-T magnitude:9.012

Catalogs and designations:
Proper Names   (Edit)
HD 1989HD 276861
TYCHO-2 2000TYC 2901-1205-1
USNO-A2.0USNO-A2 1275-03811404
HIPHIP 22445

→ Request more catalogs and designations from VizieR