Contenidos
Imágenes
Subir su imagen
DSS Images Other Images
Artículos relacionados
Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}
| NICMOS Coronagraphic Observations of 55 Cancri We present new near-infrared (1.1 μm) observations of thecircumstellar environment of the planet-bearing star 55 Cancri. Withthese Hubble Space Telescope (HST) images we are unable to confirm theobservation of bright scattered radiation at longer NIR wavelengthspreviously reported by Trilling and coworkers. NICMOS coronagraphicimages with detection sensitivities to ~100 μJy arcsec-2at 1.1 μm in the region 28-60 AU from the star fail to reveal anysignificant excess flux in point-spread function (PSF) subtracted imagestaken in two HST orbits. These new observations place flux densities inthe 19-28 AU zone at a factor of 10 or more below the reportedground-based observations. Applying a suite of a dozen well-matchedcoronagraphic reference PSFs, including one obtained in the same orbitsas the observations of 55 Cnc, yielded consistently null results indetecting a disk. We also searched for and failed to find a suggestedflux-excess anisotropy in the ratio of ~1.7:1 in the circumstellarbackground along and orthogonal to the plane of the putative disk. Wesuggest that, if such a disk does exist, then the total 1.1 μmspectral flux density in an annular zone 28-42 AU from the star must beno more than ~0.4 mJy, at least 10 times smaller than suggested byTrilling and Brown, upon which their very large estimate for the totaldust mass (0.4 M⊕) was based. Based on the far-infraredand submillimeter flux of this system and observations of scatteredlight and thermal emission from other debris disks, we also expect theintensity of the scattered light to be at least an order of magnitudebelow our upper limits.
| Photometric Variability in a Sample of 187 G and K Giants We have used three automatic photoelectric telescopes to obtainphotometric observations of 187 G, K, and (a few) M0 field giants. Wefind low-amplitude photometric variability on timescales of days toweeks on both sides of the coronal dividing line (CDL) in a total of 81or 43% of the 187 giants. About one-third of the variables haveamplitudes greater than 0.01 mag in V. In our sample the percentage ofvariable giants is a minimum for late-G spectral classes and increasesfor earlier and later classes; all K5 and M0 giants are variable. Wealso obtained high-resolution, red wavelength spectroscopic observationsof 147 of the giants, which we used to determine spectralclassifications, vsini values, and radial velocities. We acquiredadditional high-resolution, blue wavelength spectra of 48 of the giants,which we used to determine chromospheric emission fluxes. We analyzedthe photometric and spectroscopic observations to identify the cause(s)of photometric variability in our sample of giants. We show that thelight variations in the vast majority of G and K giant variables cannotbe due to rotation. For giants on the cool side of the CDL, we find thatthe variability mechanism is radial pulsation. Thus, the variabilitymechanism operating in M giants extends into the K giants up to aboutspectral class K2. On the hot side of the CDL, the variability mechanismis most likely nonradial, g-mode pulsation.
|
Enviar un nuevo artículo
Enlaces relacionados
- - No se han encontrado enlaces -
En viar un nuevo enlace
Miembro de los siguientes grupos:
|
Datos observacionales y astrométricos
Constelación: | Cangrejo |
Ascensión Recta: | 08h49m45.31s |
Declinación: | +29°26'56.0" |
Magnitud Aparente: | 7.38 |
Distancia: | 255.754 parsecs |
Movimiento Propio en Ascensión Recta: | -9.5 |
Movimiento Propio en Declinación: | -30.9 |
B-T magnitude: | 8.89 |
V-T magnitude: | 7.505 |
Catálogos y designaciones:
|