Contents
Images
Upload your image
DSS Images Other Images
Related articles
Chemical Abundances of the Milky Way Thick Disk and Stellar Halo. I. Implications of [?/Fe] for Star Formation Histories in Their Progenitors We present the abundance analysis of 97 nearby metal-poor (-3.3< [Fe/H] <-0.5) stars having kinematic characteristics ofthe Milky Way (MW) thick disk and inner and outer stellar halos. Thehigh-resolution, high-signal-to-noise optical spectra for the samplestars have been obtained with the High Dispersion Spectrograph mountedon the Subaru Telescope. Abundances of Fe, Mg, Si, Ca, and Ti have beenderived using a one-dimensional LTE abundance analysis code with KuruczNEWODF model atmospheres. By assigning membership of the sample stars tothe thick disk, inner halo, or outer halo components based on theirorbital parameters, we examine abundance ratios as a function of [Fe/H]and kinematics for the three subsamples in wide metallicity and orbitalparameter ranges. We show that, in the metallicity range of -1.5< [Fe/H] <=-0.5, the thick disk stars show constantly highmean [Mg/Fe] and [Si/Fe] ratios with small scatter. In contrast, theinner and the outer halo stars show lower mean values of these abundanceratios with larger scatter. The [Mg/Fe], [Si/Fe], and [Ca/Fe] for theinner and the outer halo stars also show weak decreasing trends with[Fe/H] in the range [Fe/H] >-2. These results favor thescenarios that the MW thick disk formed through rapid chemicalenrichment primarily through Type II supernovae of massive stars, whilethe stellar halo has formed at least in part via accretion of progenitorstellar systems having been chemically enriched with differenttimescales.
| New Lithium Measurements in Metal-Poor Stars We provide λ6708 Li I measurements in 37 metal-poor stars, mostof which are poorly studied or have no previous measurements, fromhigh-resolution and high-S/N spectroscopy obtained with the McDonaldObservatory 2.1 m and 2.7 m telescopes. The typical line-strength andabundance uncertainties, confirmed by the thinness of the Spite plateaumanifested by our data and by comparison with previous measurements, are≤ 4 mÅ and ≤ 0.07--0.10 dex, respectively. Two raremoderately metal-poor solar-Teff dwarfs, HIP 36491 and 40613,with significantly depleted but still detectable Li are identified;future light-element determinations in the more heavily depleted HIP40613 may provide constraints on the Li depletion mechanism acting inthis star. We note two moderately metal-poor and slightly evolved stars,HIP 105888 and G265-39, that appear to be analogs of the low-Limoderately metal-poor subgiant HD 201889. Preliminary abundance analysisof G265-39 finds no abnormalities that suggest that the low Li contentis associated with AGB mass transfer or deep mixing and p-capture. Wealso detect line doubling in HIP 4754, heretofore classified as SB1.
| Stellar population models in the UV. I. Characterisation of the New Generation Stellar Library Context. The spectral predictions of stellar population models are notas accurate in the ultra-violet (UV) as in the optical wavelengthdomain. One of the reasons is the lack of high-quality stellarlibraries. The New Generation Stellar Library (NGSL), recently released,represents a significant step towards the improvement of this situation. Aims: To prepare NGSL for population synthesis, we determined theatmospheric parameters of its stars, we assessed the precision of thewavelength calibration and characterised its intrinsic resolution. Wealso measured the Galactic extinction for each of the NGSL stars. Methods: For our analyses we used ULySS, a full spectrum fittingpackage, fitting the NGSL spectra against the MILES interpolator. Results: We find that the wavelength calibration is precise up to 0.1px, after correcting a systematic effect in the optical range. Thespectral resolution varies from 3 Å in the UV to 10 Å in thenear-infrared (NIR), corresponding to a roughly constant reciprocalresolution R = ?/?? ? 1000 and an instrumentalvelocity dispersion ?ins ? 130 km s-1. Wederived the atmospheric parameters homogeneously. The precision for theFGK stars is 42 K, 0.24 and 0.09 dex for Teff, log g and[Fe/H], respectively. The corresponding mean errors are 29 K, 0.50 and0.48 dex for the M stars, and for the OBA stars they are 4.5 percent,0.44 and 0.18 dex. The comparison with the literature shows that ourresults are not biased.Table A1 is only available at CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/538/A143
| Carbon and Oxygen in Nearby Stars: Keys to Protoplanetary Disk Chemistry We present carbon and oxygen abundances for 941 FGK stars—thelargest such catalog to date. We find that planet-bearing systems areenriched in these elements. We self-consistently measure NC/NO , which is thought to play a key role in planetformation. We identify 46 stars with NC /NO >=1.00 as potential hosts of carbon-dominated exoplanets. We measure adownward trend in [O/Fe] versus [Fe/H] and find distinct trends in thethin and thick disks, supporting the work of Bensby et al. Finally, wemeasure sub-solar NC /NO = 0.40+0.11- 0.07, for WASP-12, a surprising result as this star is hostto a transiting hot Jupiter whose dayside atmosphere was recentlyreported to have NC /NO >= 1 by Madhusudhan etal. Our measurements are based on 15,000 high signal-to-noise spectrataken with the Keck 1 telescope as part of the California Planet Search.We derive abundances from the [O I] and C I absorption lines at ?= 6300 and 6587 Å using the SME spectral synthesizer.Based in part on observations obtained at the W. M. Keck Observatory,which is operated as a scientific partnership among the CaliforniaInstitute of Technology, the University of California, and the NationalAeronautics and Space Administration. The Observatory was made possibleby the generous financial support of the W. M. Keck Foundation.
| Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry Astrometric surveys provide the opportunity to measure the absolutemagnitudes of large numbers of stars, but only if the individualline-of-sight extinctions are known. Unfortunately, extinction is highlydegenerate with stellar effective temperature when estimated frombroad-band optical/infrared photometry. To address this problem, Iintroduce a Bayesian method for estimating the intrinsic parameters of astar and its line-of-sight extinction. It uses both photometry andparallaxes in a self-consistent manner in order to provide anon-parametric posterior probability distribution over the parameters.The method makes explicit use of domain knowledge by employing theHertzsprung-Russell Diagram (HRD) to constrain solutions and to ensurethat they respect stellar physics. I first demonstrate this method byusing it to estimate effective temperature and extinction from BVJHKdata for a set of artificially reddened Hipparcos stars, for whichaccurate effective temperatures have been estimated from high-resolutionspectroscopy. Using just the four colours, we see the expected strongdegeneracy (positive correlation) between the temperature andextinction. Introducing the parallax, apparent magnitude and the HRDreduces this degeneracy and improves both the precision (reduces theerror bars) and the accuracy of the parameter estimates, the latter byabout 35 per cent. The resulting accuracy is about 200 K in temperatureand 0.2 mag in extinction. I then apply the method to estimate theseparameters and absolute magnitudes for some 47 000 F, G, K Hipparcosstars which have been cross-matched with Two-Micron All-Sky Survey(2MASS). The method can easily be extended to incorporate the estimationof other parameters, in particular metallicity and surface gravity,making it particularly suitable for the analysis of the 109stars from Gaia.
| A catalogue of young runaway Hipparcos stars within 3 kpc from the Sun Traditionally, runaway stars are O- and B-type stars with large peculiarvelocities. We would like to extend this definition to young stars (upto ?50 Myr) of any spectral type and to identify those present in theHipparcos catalogue by applying different selection criteria, such aspeculiar space velocities or peculiar one-dimensional velocities.Runaway stars are important for studying the evolution of multiple starsystems or star clusters, as well as for identifying the origins ofneutron stars. We compile the distances, proper motions, spectral types,luminosity classes, V magnitudes and B-V colours, and we utilizeevolutionary models from different authors to obtain star ages. We studya sample of 7663 young Hipparcos stars within 3 kpc from the Sun. Theradial velocities are obtained from the literature. We investigate thedistributions of the peculiar spatial velocity and the peculiar radialvelocity as well as the peculiar tangential velocity and itsone-dimensional components and we obtain runaway star probabilities foreach star in the sample. In addition, we look for stars that aresituated outside any OB association or OB cluster and the Galactic planeas well as stars for which the velocity vector points away from themedian velocity vector of neighbouring stars or the surrounding local OBassociation/cluster (although the absolute velocity might be small). Wefind a total of 2547 runaway star candidates (with a contamination ofnormal Population I stars of 20 per cent at most). Thus, aftersubtracting these 20 per cent, the runaway frequency among young starsis about 27 per cent. We compile a catalogue of runaway stars, which isavailable via VizieR.
| Chromospheric Activity and Jitter Measurements for 2630 Stars on the California Planet Search We present time series measurements of chromospheric activity for morethan 2600 main-sequence and subgiant stars on the California PlanetSearch (CPS) program with spectral types ranging from about F5V to M4Vfor main-sequence stars and from G0IV to about K5IV for subgiants. Thelarge data set of more than 44,000 spectra allows us to identify anempirical baseline floor for chromospheric activity as a function ofcolor and height above the main sequence. We define ?S as anexcess in emission in the Ca II H and K lines above the baselineactivity floor and define radial velocity jitter as a function of?S and B - V for main-sequence and subgiant stars. Although thejitter for any individual star can always exceed the baseline level, wefind that K dwarfs have the lowest level of jitter. The lack ofcorrelation between observed jitter and chromospheric activity in Kdwarfs suggests that the observed jitter is dominated by instrumental oranalysis errors and not astrophysical noise sources. Thus, given thelong-term precision for the CPS program, radial velocities are notcorrelated with astrophysical noise for chromospherically quiet K dwarfstars, making these stars particularly well suited for the highestprecision Doppler surveys. Chromospherically quiet F and G dwarfs andsubgiants exhibit higher baseline levels of astrophysical jitter than Kdwarfs. Despite the fact that the rms in Doppler velocities iscorrelated with the mean chromospheric activity, it is rare to seeone-to-one correlations between the individual time series activity andDoppler measurements, diminishing the prospects for correctingactivity-induced velocity variations in F and G dwarfs.Based on observations obtained at the Keck Observatory and LickObservatory, which are operated by the University of California.
| Towards a new full-sky list of radial velocity standard stars Aims: The calibration of the Radial Velocity Spectrometer (RVS)onboard the ESA Gaia satellite (to be launched in 2012) requires a listof standard stars with a radial velocity (RV) known with an accuracy ofat least 300 m s-1. The IAU commission 30 lists of RVstandard stars are too bright and not dense enough. Methods: Wedescribe the selection criteria due to the RVS constraints for buildingan adequate full-sky list of at least 1000 RV standards from cataloguesalready published in the literature. Results: A preliminary listof 1420 candidate standard stars is built and its properties are shown.An important re-observation programme has been set up in order to insurewithin it the selection of objects with a good stability until the endof the Gaia mission (around 2018). Conclusions: The present listof candidate standards is available at CDS and usable for many otherprojects.Complete Table 2 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/524/A10
| The PASTEL catalogue of stellar parameters Aims: The PASTEL catalogue is an update of the [Fe/H] catalogue,published in 1997 and 2001. It is a bibliographical compilation ofstellar atmospheric parameters providing (T_eff, log g, [Fe/H])determinations obtained from the analysis of high resolution, highsignal-to-noise spectra, carried out with model atmospheres. PASTEL alsoprovides determinations of the one parameter T_eff based on variousmethods. It is aimed in the future to provide also homogenizedatmospheric parameters and elemental abundances, radial and rotationalvelocities. A web interface has been created to query the catalogue onelaborated criteria. PASTEL is also distributed through the CDS databaseand VizieR. Methods: To make it as complete as possible, the mainjournals have been surveyed, as well as the CDS database, to findrelevant publications. The catalogue is regularly updated with newdeterminations found in the literature. Results: As of Febuary2010, PASTEL includes 30151 determinations of either T_eff or (T_eff,log g, [Fe/H]) for 16 649 different stars corresponding to 865bibliographical references. Nearly 6000 stars have a determination ofthe three parameters (T_eff, log g, [Fe/H]) with a high qualityspectroscopic metallicity.The catalogue can be queried through a dedicated web interface at http://pastel.obs.u-bordeaux1.fr/.It is also available in electronic form at the Centre de DonnéesStellaires in Strasbourg (http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=B/pastel),at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orvia http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/515/A111
| Calibration of Strömgren uvby-H? photometry for late-type stars - a model atmosphere approach Context: The use of model atmospheres for deriving stellar fundamentalparameters, such as T_eff, log g, and [Fe/H], will increase as we findand explore extreme stellar populations where empirical calibrations arenot yet available. Moreover, calibrations for upcoming large satellitemissions of new spectrophotometric indices, similar to the uvby-H?system, will be needed. Aims: We aim to test the power oftheoretical calibrations based on a new generation of MARCS models bycomparisons with observational photomteric data. Methods: Wecalculated synthetic uvby-H? colour indices from synthetic spectra.A sample of 367 field stars, as well as stars in globular clusters, isused for a direct comparison of the synthetic indices versus empiricaldata and for scrutinizing the possibilities of theoretical calibrationsfor temperature, metallicity, and gravity. Results: We show thatthe temperature sensitivity of the synthetic (b-y) colour is very closeto its empirical counterpart, whereas the temperature scale based uponH? shows a slight offset. The theoretical metallicity sensitivityof the m1 index (and for G-type stars its combination withc_1) is somewhat higher than the empirical one, based upon spectroscopicdeterminations. The gravity sensitivity of the synthetic c1index shows satisfactory behaviour when compared to obervations of Fstars. For stars cooler than the sun, a deviation is significant in thec1-(b-y) diagram. The theoretical calibrations of (b-y),(v-y), and c1 seem to work well for Pop II stars and lead toeffective temperatures for globular cluster stars supporting recentclaims that atomic diffusion occurs in stars near the turnoff point ofNGC 6397. Conclusions: Synthetic colours of stellar atmospherescan indeed be used, in many cases, to derive reliable fundamentalstellar parameters. The deviations seen when compared to observationaldata could be due to incomplete linelists but are possibly also due tothe effects of assuming plane-parallell or spherical geometry and LTE.Model colours are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/498/527
| Kinematics and metallicity analysis for nearby F, G and K stars A sample containing 1 026 stars of spectral types F, G, and K, mainlydwarfs, from the solar neighbourhood with available space velocities andmetallicities is treated. The treatment comprises a statistical analysisof the metallicity and velocity data and calculation of galactocentricorbits. Sample stars identified as members of the galactic halo aredetached from the rest of the sample based on the values of theirmetallicities, velocity components and galactocentric orbits. Inidentifying halo stars a new, kinematical, criterion is proposed. Exceptone, these halo stars are the metal-poorest ones in the sample. Besides,they have very high velocities with respect to LSR. On the other hand,the separation between the thin disc and thick one is done statisticallybased on LSR space velocities, membership probability (Schwarzschilddistribution with assumed parameters) and galactocentric orbits. In themetallicity these two groups are not much different. For each of thethree subsamples the mean motion and velocity ellipsoid are calculated.The elements of the velocity ellipsoids agree well with the values foundin the literature, especially for the thin disc. The fractions of thesubsystems found for the present sample are: thin disc 93%, thick disc6%, halo 1%. The sample stars established to be members of the thin discare examined for existence of star streams. Traces of both, known andunknown, star streams are not found.
| Chemical Inhomogeneities in the Milky Way Stellar Halo We have compiled a sample of 699 stars from the recent literature withdetailed chemical abundance information (spanning –4.2lsim [Fe/H]lsim+0.3), and we compute their space velocities and Galactic orbitalparameters. We identify members of the inner and outer stellar halopopulations in our sample based only on their kinematic properties andthen compare the abundance ratios of these populations as a function of[Fe/H]. In the metallicity range where the two populations overlap(–2.5lsim [Fe/H] lsim–1.5), the mean [Mg/Fe] of the outerhalo is lower than the inner halo by –0.1 dex. For [Ni/Fe] and[Ba/Fe], the star-to-star abundance scatter of the inner halo isconsistently smaller than in the outer halo. The [Na/Fe], [Y/Fe],[Ca/Fe], and [Ti/Fe] ratios of both populations show similar means andlevels of scatter. Our inner halo population is chemically homogeneous,suggesting that a significant fraction of the Milky Way stellar halooriginated from a well-mixed interstellar medium. In contrast, our outerhalo population is chemically diverse, suggesting that anothersignificant fraction of the Milky Way stellar halo formed in remoteregions where chemical enrichment was dominated by local supernovaevents. We find no abundance trends with maximum radial distance fromthe Galactic center or maximum vertical distance from the Galactic disk.We also find no common kinematic signature for groups of metal-poorstars with peculiar abundance patters, such as the α-poor stars orstars showing unique neutron-capture enrichment patterns. Several starsand dwarf spheroidal systems with unique abundance patterns spend themajority of their time in the distant regions of the Milky Way stellarhalo, suggesting that the true outer halo of the Galaxy may have littleresemblance to the local stellar halo.
| Speckle interferometry of metal-poor stars in the solar neighborhood. II The results of speckle interferometric observations of 115 metal-poorstars ([m/H] < ‑1) within 250 pc from the Sun and with propermotions µ ≳ 0.2″/yr, made with the 6-m telescope of theSpecial Astrophysical Observatory of the Russian Academy of Sciences,are reported. Close companions with separations ranging from0.034″ to 1″ were observed for 12 objects—G76-21,G59-1, G63-46, G135-16, G168-42, G141-47, G142-44, G190-10, G28-43,G217-8, G130-7, and G89-14—eight of them are astrometricallyresolved for the first time. The newly resolved systems include onetriple star—G190-10. If combined with spectroscopic and visualdata, our results imply a single:binary:triple:quadruple star ratio of147:64:9:1 for a sample of 221 primary components of halo and thick-diskstars.
| Automated classification of ELODIE stellar spectral library using probabilistic artificial neural networks A Probabilistic Neural Network model has been used for automatedclassification of ELODIE stellar spectral library consisting of about2000 spectra into 158 known spectro-luminosity classes. The full spectrawith 561 flux bins and a PCA reduced set of 57, 26 and 16 componentshave been used for the training and test sessions. The results show aspectral type classification accuracy of 3.2 sub-spectral type andluminosity class accuracy of 2.7 for the full spectra and an accuracy of3.1 and 2.6 respectively with the PCA set. This technique will be usefulfor future upcoming large databases and their rapid classification.
| Measuring the Balmer Jump and the Effective Gravity in FGK Stars It is difficult to accurately measure the effective gravity (logg) inlate-type stars using broadband (e.g., UBV or SDSS) or intermediate-band(uvby) photometric systems, especially when the stars can cover a rangeof metallicities and reddenings. However, simple spectroscopicobservational and data reduction techniques can yield accurate valuesfor logg through comparison of the Balmer jumps of low-resolutionspectra with recent grids of synthetic flux spectra.
| Lithium abundances in metal-poor stars Aims.Lithium abundances for 19 metal-poor stars are determined usinghigh-resolution spectroscopy. The abundances of stars on the lithiumplateau are discussed. Methods: All abundance results are derived fromNLTE statistical equilibrium calculations and spectrum synthesismethods. Results: In agreement with previous analyses it is found thatexcitation and de-excitation due to hydrogen collisions are negligiblefor the lithium line formation process, while charge transfer reactionsare an important source of thermalization. However, the resulting NLTEeffects on the determination of lithium abundances for metal-poor starsare negligible (<0.06 dex). Conclusions: .The mean lithium abundancefor stars on the lithium plateau determined from NLTE analyses is A(Li)~ 2.26, while it is 2.21 dex when charge transfer reactions areincluded. The latter result enhances the discrepancy between theobserved lithium abundances and the primordial lithium abundance asinferred by the WMAP analysis of the cosmic microwave background. Thisdiscrepancy may be explained by metal diffusion.Based on observations collected at the Germany-Spanish AstronomicalCenter, Calar Alto, Spain.
| Pulkovo compilation of radial velocities for 35495 stars in a common system. Not Available
| Effective temperature scale and bolometric corrections from 2MASS photometry We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.
| uvby-β photometry of high-velocity and metal-poor stars. XI. Ages of halo and old disk stars New uvby-β data are provided for 442 high-velocity and metal-poorstars; 90 of these stars have been observed previously by us, and 352are new. When combined with our previous two photometric catalogues, thedata base is now made up of 1533 high-velocity and metal-poor stars, allwith uvby-β photometry and complete kinematic data, such as propermotions and radial velocities taken from the literature. Hipparcos, plusa new photometric calibration for Mv also based on theHipparcos parallaxes, provide distances for nearly all of these stars;our previous photometric calibrations give values for E(b-y) and [Fe/H].The [Fe/H], V(rot) diagram allows us to separate these stars intodifferent Galactic stellar population groups, such as old-thin-disk,thick-disk, and halo. The X histogram, where X is our stellar-populationdiscriminator combining V(rot) and [Fe/H], and contour plots for the[Fe/H], V(rot) diagram both indicate two probable components to thethick disk. These population groups and Galactic components are studiedin the (b-y)0, Mv diagram, compared to theisochrones of Bergbusch & VandenBerg (2001, ApJ, 556, 322), toderive stellar ages. The two thick-disk groups have the meancharacteristics: ([Fe/H], V(rot), Age, σW') ≈ (-0.7dex, 120 km s-1, 12.5 Gyr, 62.0 km s-1), and≈(-0.4, 160, 10.0, 45.8). The seven most metal-poor halo groups,-2.31 ≤ [Fe/H] ≤ -1.31, show a mean age of 13.0 ± 0.2(mean error) Gyr, giving a mean difference from the WMAP results for theage of the Universe of 0.7 ± 0.3 Gyr. These results for the agesand components of the thick disk and for the age of the Galactic halofield stars are discussed in terms of various models and ideas for theformation of galaxies and their stellar populations.
| The lithium content of the Galactic Halo stars Thanks to the accurate determination of the baryon density of theuniverse by the recent cosmic microwave background experiments, updatedpredictions of the standard model of Big Bang nucleosynthesis now yieldthe initial abundance of the primordial light elements withunprecedented precision. In the case of ^7Li, the CMB+SBBN value issignificantly higher than the generally reported abundances for Pop IIstars along the so-called Spite plateau. In view of the crucialimportance of this disagreement, which has cosmological, galactic andstellar implications, we decided to tackle the most critical issues ofthe problem by revisiting a large sample of literature Li data in halostars that we assembled following some strict selection criteria on thequality of the original analyses. In the first part of the paper wefocus on the systematic uncertainties affecting the determination of theLi abundances, one of our main goal being to look for the "highestobservational accuracy achievable" for one of the largest sets of Liabundances ever assembled. We explore in great detail the temperaturescale issue with a special emphasis on reddening. We derive four sets ofeffective temperatures by applying the same colour {T}_eff calibrationbut making four different assumptions about reddening and determine theLTE lithium values for each of them. We compute the NLTE corrections andapply them to the LTE lithium abundances. We then focus on our "best"(i.e. most consistent) set of temperatures in order to discuss theinferred mean Li value and dispersion in several {T}_eff and metallicityintervals. The resulting mean Li values along the plateau for [Fe/H]≤ 1.5 are A(Li)_NLTE = 2.214±0.093 and 2.224±0.075when the lowest effective temperature considered is taken equal to 5700K and 6000 K respectively. This is a factor of 2.48 to 2.81 (dependingon the adopted SBBN model and on the effective temperature range chosento delimit the plateau) lower than the CMB+SBBN determination. We findno evidence of intrinsic dispersion. Assuming the correctness of theCMB+SBBN prediction, we are then left with the conclusion that the Liabundance along the plateau is not the pristine one, but that halo starshave undergone surface depletion during their evolution. In the secondpart of the paper we further dissect our sample in search of newconstraints on Li depletion in halo stars. By means of the Hipparcosparallaxes, we derive the evolutionary status of each of our samplestars, and re-discuss our derived Li abundances. A very surprisingresult emerges for the first time from this examination. Namely, themean Li value as well as the dispersion appear to be lower (althoughfully compatible within the errors) for the dwarfs than for the turnoffand subgiant stars. For our most homogeneous dwarfs-only sample with[Fe/H] ≤ 1.5, the mean Li abundances are A(L)_NLTE = 2.177±0.071 and 2.215±0.074 when the lowest effective temperatureconsidered is taken equal to 5700 K and 6000 K respectively. This is afactor of 2.52 to 3.06 (depending on the selected range in {T}_eff forthe plateau and on the SBBN predictions we compare to) lower than theCMB+SBBN primordial value. Instead, for the post-main sequence stars thecorresponding values are 2.260±0.1 and 2.235±0.077, whichcorrespond to a depletion factor of 2.28 to 2.52. These results,together with the finding that all the stars with Li abnormalities(strong deficiency or high content) lie on or originate from the hotside of the plateau, lead us to suggest that the most massive of thehalo stars have had a slightly different Li history than their lessmassive contemporaries. In turn, this puts strong new constraints on thepossible depletion mechanisms and reinforces Li as a stellartomographer.
| Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.
| A Catalog of Northern Stars with Annual Proper Motions Larger than 0.15" (LSPM-NORTH Catalog) The LSPM catalog is a comprehensive list of 61,977 stars north of theJ2000 celestial equator that have proper motions larger than 0.15"yr-1 (local-background-stars frame). The catalog has beengenerated primarily as a result of our systematic search for high propermotion stars in the Digitized Sky Surveys using our SUPERBLINK software.At brighter magnitudes, the catalog incorporates stars and data from theTycho-2 Catalogue and also, to a lesser extent, from the All-SkyCompiled Catalogue of 2.5 million stars. The LSPM catalog considerablyexpands over the old Luyten (Luyten Half-Second [LHS] and New LuytenTwo-Tenths [NLTT]) catalogs, superseding them for northern declinations.Positions are given with an accuracy of <~100 mas at the 2000.0epoch, and absolute proper motions are given with an accuracy of ~8 masyr-1. Corrections to the local-background-stars propermotions have been calculated, and absolute proper motions in theextragalactic frame are given. Whenever available, we also give opticalBT and VT magnitudes (from Tycho-2, ASCC-2.5),photographic BJ, RF, and IN magnitudes(from USNO-B1 catalog), and infrared J, H, and Ks magnitudes(from 2MASS). We also provide an estimated V magnitude and V-J color fornearly all catalog entries, useful for initial classification of thestars. The catalog is estimated to be over 99% complete at high Galacticlatitudes (|b|>15deg) and over 90% complete at lowGalactic latitudes (|b|>15deg), down to a magnitudeV=19.0, and has a limiting magnitude V=21.0. All the northern starslisted in the LHS and NLTT catalogs have been reidentified, and theirpositions, proper motions, and magnitudes reevaluated. The catalog alsolists a large number of completely new objects, which promise to expandvery significantly the census of red dwarfs, subdwarfs, and white dwarfsin the vicinity of the Sun.Based on data mining of the Digitized Sky Surveys (DSSs), developed andoperated by the Catalogs and Surveys Branch of the Space TelescopeScience Institute (STScI), Baltimore.Developed with support from the National Science Foundation (NSF), aspart of the NASA/NSF NStars program.
| Stellar Chemical Signatures and Hierarchical Galaxy Formation To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.
| Cu and Zn in the early Galaxy We present Cu and Zn abundances for 38 FGK stars, mostly dwarfs,spanning a metallicity range between solar and [Fe/H] = -3. Theabundances were obtained using Kurucz's local thermal equilibrium (LTE)model atmospheres and the near-UV lines of Cu I 3273.95 Å and Zn I3302.58 Å observed at high spectral resolution. The trend of[Cu/Fe] versus [Fe/H] is almost solar for [Fe/H] > -1 and thendecreases to a plateau <[Cu/Fe]> = -0.98 at [Fe/H] < -2.5,whereas the [Zn/Fe] trend is essentially solar for [Fe/H] > -2 andthen slightly increases at lower metallicities to an average value of<[Zn/Fe]> = +0.18. We compare our results with previous work onthese elements, and briefly discuss them in terms of nucleosynthesisprocesses. Predictions of halo chemical evolution fairly reproduce thetrends, especially the [Cu/Fe] plateau at very low metallicities, but toa lesser extent the higher [Zn/Fe] ratios at low metallicities,indicating possibly missing yields.
| Chromospheric Ca II Emission in Nearby F, G, K, and M Stars We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.
| A CCD imaging search for wide metal-poor binaries We explored the regions within a radius of 25 arcsec around 473 nearby,low-metallicity G- to M-type stars using (VR)I optical filters andsmall-aperture telescopes. About 10% of the sample was searched up toangular separations of 90 arcsec. We applied photometric and astrometrictechniques to detect true physical companions to the targets. The greatmajority of the sample stars was drawn from the Carney-Latham surveys;their metallicities range from roughly solar to [Fe/H] = -3.5 dex. OurI-band photometric survey detected objects that are between 0 and 5 magfainter (completeness) than the target stars; the maximum dynamicalrange of our exploration is 9 mag. We also investigated the literature,and inspected images from the Digitized Sky Surveys to complete oursearch. By combining photometric and proper motion measurements, weretrieved 29 previously known companions, and identified 13 new propermotion companions. Near-infrared 2MASS photometry is provided for thegreat majority of them. Low-resolution optical spectroscopy (386-1000nm) was obtained for eight of the new companion stars. Thesespectroscopic data confirm them as cool, late-type, metal-depleteddwarfs, with spectral classes from esdK7 to sdM3. After comparison withlow-metallicity evolutionary models, we estimate the masses of theproper motion companion stars to be in the range 0.5-0.1Mȯ. They are moving around their primary stars atprojected separations between 32 and 57 000 AU. These orbitalsizes are very similar to those of solar-metallicity stars of the samespectral types. Our results indicate that about 15% of the metal-poorstars have stellar companions in wide orbits, which is in agreement withthe binary fraction observed among main sequence G- to M-type stars andT Tauri stars.Based on observations made with the IAC80 telescope operated on theisland of Tenerife by the Instituto de Astrofísica de Canarias inthe Spanish Observatorio del Teide; also based on observations made withthe 2.2 m telescope of the German-Spanish Calar Alto Observatory(Almería, Spain), the William Herschel Telescope (WHT) operatedon the island of La Palma by the Isaac Newton Group in the SpanishObservatorio del Roque de los Muchachos (ORM) of the Instituto deAstrofísica de Canarias; and the Telescopio Nazionale Galileo(TNG) at the ORM.The complete Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/419/167
| Abundances for metal-poor stars with accurate parallaxes. I. Basic data We present element-to-element abundance ratios measured from highdispersion spectra for 150 field subdwarfs and early subgiants withaccurate Hipparcos parallaxes (errors <20%). For 50 stars new spectrawere obtained with the UVES on Kueyen (VLT UT2), the McDonald 2.7 mtelescope, and SARG at TNG. Additionally, literature equivalent widthswere taken from the works by Nissen & Schuster, Fulbright, andProchaska et al. to complement our data. The whole sample includes boththick disk and halo stars (and a few thin disk stars); most stars havemetallicities in the range -2<[Fe/H]<-0.6. We found our data, thatof Nissen & Schuster, and that of Prochaska to be of comparablequality; results from Fulbright scatter a bit more, but they are stillof very good quality and are extremely useful due to the large size ofhis sample. The results of the present analysis will be used inforthcoming papers to discuss the chemical properties of thedissipational collapse and accretion components of our Galaxy.Based in part on data collected at the European Southern Observatory,Chile, at the MacDonald Observatory, Texas, USA, and at the TelescopioNazionale Galileo, Canary Island, INAF,Italy-Spain.}\fnmsep\thanks{Table 1 is only available in electronic format the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orvia\resizebox{8.8cm}{2.2mm}htpp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/187}
| Sodium Abundances in Stellar Atmospheres with Differing Metallicities The non-LTE sodium abundances of 100 stars with metallicities-3<[Fe/H]<0.3 are determined using high-dispersion spectra withhigh signal-to-noise ratios. The sodium abundances [Na/Fe] obtained areclose to the solar abundance and display a smaller scatter than valuespublished previously. Giants (logg<3.8) with [Fe/H]<-1 do notdisplay overabundances of sodium, and their sodium abundances do notshow an anticorrelation with the oxygen abundance, in contrast toglobular-cluster giants. They likewise do not show sodium-abundancevariations with motion along the giant branch. No appreciable decreasein the sodium abundance was detected for dwarfs (logg>3.8) withmetallicities -2<[Fe/H]<-1. The observed relation between [Na/Fe]and [Fe/H] is in satisfactory agreement with the theoreticalcomputations of Samland, which take into account the metallicitydependence of the sodium yield and a number of other factors affectingthe distribution of elements in the Galaxy during the course of itsevolution.
| Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.
| New Metallicity Calibration Down to [Fe/H] = -2.75 dex We have taken 88 dwarfs, covering the colour-index interval 0.37 <=(B-V)0 <= 1.07mag, with metallicities -2.70 <= [Fe/H]<= +0.26dex, from three different sources for new metallicitycalibration. The catalogue of Cayrel de Stroble et al. (2001), whichincludes 65% of the stars in our sample, supplies detailed informationon abundances for stars with determination based on high-resolutionspectroscopy. In constructing the new calibration we have used as`corner stones' 77 stars which supply at least one of the followingconditions: (i) the parallax is larger than 10mas (distance relative tothe Sun less than 100pc) and the galactic latitude is absolutely higherthan 30° (ii) the parallax is rather large, if the galactic latitudeis absolutely low and vice versa. Contrary to previous investigations, athird-degree polynomial is fitted for the new calibration: [Fe/H]=0.10 -2.76δ - 24.04δ2 + 30.00δ3. Thecoefficients were evaluated by the least-squares method, without regardto the metallicity of Hyades. However, the constant term is in the rangeof metallicity determined for this cluster, i.e.0.08<=[Fe/H]<=0.11dex. The mean deviation and the mean error inour work are equal to those of Carney (1979), for [Fe/H] >= -1.75dexwhere Carney's calibration is valid
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Κύκνος |
Right ascension: | 20h55m16.76s |
Declination: | +42°18'00.7" |
Apparent magnitude: | 10.334 |
Proper motion RA: | 54.5 |
Proper motion Dec: | -392.7 |
B-T magnitude: | 10.966 |
V-T magnitude: | 10.387 |
Catalogs and designations:
|