Contents
Images
Upload your image
DSS Images Other Images
Related articles
Spectroscopic binaries among Hipparcos M giants^,. I. Data, orbits, and intrinsic variations Context: This paper is a follow-up on the vast effort to collect radialvelocity data for stars belonging to the Hipparcos survey. Aims: We aimat extending the orbital data available for binaries with M giantprimaries. The data presented in this paper will be used in thecompanion papers of this series to (i) derive the binary frequency amongM giants and compare it to that of K giants (Paper II); and (ii) analysethe eccentricity - period diagram and the mass-function distribution(Paper III). Methods: Keplerian solutions are fitted to radial-velocitydata. However, for several stars, no satisfactory solution could befound, even though the radial-velocity standard deviation is greaterthan the instrumental error, because M giants suffer from intrinsicradial-velocity variations due to pulsations. We show that theseintrinsic radial-velocity variations can be linked with both the averagespectral-line width and the photometric variability. Results: Wepresent an extensive collection of spectroscopic orbits for M giantswith 12 new orbits, plus 17 from the literature. On top of these, 1preliminary orbit yielded an approximate value for the eccentricity andthe orbital period. Moreover, to illustrate how the largeradial-velocity jitter present in Mira and semi-regular variables mayeasily be confused with orbital variations, we also present examples ofpseudo-orbital variations (in S UMa, X Cnc, and possibly in HD 115 521,a former IAU radial-velocity standard). Because of this difficulty, Mgiants involving Mira variables were excluded from our monitored sample.We finally show that the majority of M giants detected as X-ray sourcesare actually binaries. Conclusions: The data presented in this paperconsiderably increase the orbital data set for M giants, and will allowus to conduct a detailed analysis of the eccentricity - period diagramin a companion paper (Paper III).Based on observations carried out at the Swiss telescope installed atthe Observatoire de Haute Provence (OHP, France), and at the 1.93-m OHPtelescope. Full Tables 2, 3, and Table 6 are only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/498/627
| First Stellar Velocity Dispersion Measurement of a Luminous Quasar Host with Gemini North Laser Guide Star Adaptive Optics We present the first use of the Gemini North laser guide star adaptiveoptics (LGS AO) system and an integral field unit (IFU) to measure thestellar velocity dispersion of the host of a luminous quasar. The quasarPG 1426+015 (z=0.086) was observed with the Near-Infrared Integral FieldSpectrometer (NIFS) on the 8 m Gemini North telescope in the H band aspart of the Science Verification phase of the new ALTAIR LGS AO system.The NIFS IFU and LGS AO are well suited for host studies of luminousquasars because one can achieve a large ratio of host to quasar light.We have measured the stellar velocity dispersion of PG 1426+015 from0.1'' to 1'' (0.16 to 1.6 kpc) to be 217+/-15 kms-1 based on high signal-to-noise ratio measurements of Si I,Mg I, and several CO band heads. This new measurement is a factor of 4more precise than a previous measurement obtained with long-slitspectroscopy and good, natural seeing, yet was obtained with a shorternet integration time. We find that PG 1426+015 has a velocity dispersionthat places it significantly above theMBH-?* relation of quiescent galaxies andlower luminosity active galactic nuclei with black hole masses estimatedfrom reverberation mapping. We discuss several possible explanations forthis discrepancy that could be addressed with similar observations of alarger sample of luminous quasars.
| Pulkovo compilation of radial velocities for 35495 stars in a common system. Not Available
| Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}
| Hipparcos red stars in the HpV_T2 and V I_C systems For Hipparcos M, S, and C spectral type stars, we provide calibratedinstantaneous (epoch) Cousins V - I color indices using newly derivedHpV_T2 photometry. Three new sets of ground-based Cousins V I data havebeen obtained for more than 170 carbon and red M giants. These datasetsin combination with the published sources of V I photometry served toobtain the calibration curves linking Hipparcos/Tycho Hp-V_T2 with theCousins V - I index. In total, 321 carbon stars and 4464 M- and S-typestars have new V - I indices. The standard error of the mean V - I isabout 0.1 mag or better down to Hp~9 although it deteriorates rapidly atfainter magnitudes. These V - I indices can be used to verify thepublished Hipparcos V - I color indices. Thus, we have identified ahandful of new cases where, instead of the real target, a random fieldstar has been observed. A considerable fraction of the DMSA/C and DMSA/Vsolutions for red stars appear not to be warranted. Most likely suchspurious solutions may originate from usage of a heavily biased color inthe astrometric processing.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA 1997).}\fnmsep\thanks{Table 7 is onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/397/997
| New periodic variables from the Hipparcos epoch photometry Two selection statistics are used to extract new candidate periodicvariables from the epoch photometry of the Hipparcos catalogue. Theprimary selection criterion is a signal-to-noise ratio. The dependenceof this statistic on the number of observations is calibrated usingabout 30000 randomly permuted Hipparcos data sets. A significance levelof 0.1 per cent is used to extract a first batch of candidate variables.The second criterion requires that the optimal frequency be unaffectedif the data are de-trended by low-order polynomials. We find 2675 newcandidate periodic variables, of which the majority (2082) are from theHipparcos`unsolved' variables. Potential problems with theinterpretation of the data (e.g. aliasing) are discussed.
| The 74th Special Name-list of Variable Stars We present the Name-list introducing GCVS names for 3153 variable starsdiscovered by the Hipparcos mission.
| 2.2-micron field stars at the North Galactic Pole The properties of the 2.2-micron field stars seen near the NorthGalactic Pole by the Two Micron Sky Survey and by surveys at highersensitivity are discussed. All the 2.2-micron sources found in thesesurveys can be identified with stars with known spectral types. Thedistribution of the 2.2-micron field stars appears to bewell-understood.
| The space distribution of late type stars in a North galactic pole region. Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1962AJ.....67...37U&db_key=AST
| A list of relatively cool stars in the vicinity of the north galacticpole. Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1960AJ.....65..644U&db_key=AST
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Jagdhunde |
Right ascension: | 12h23m53.92s |
Declination: | +40°43'10.3" |
Apparent magnitude: | 8.072 |
Distance: | 279.33 parsecs |
Proper motion RA: | -19.6 |
Proper motion Dec: | 8.7 |
B-T magnitude: | 10.088 |
V-T magnitude: | 8.239 |
Catalogs and designations:
|