Inici     Començant     Sobreviure a l'Univers    
Inhabited Sky
    News@Sky     Astro Fotografia     La Col·lecció     Fòrum     Blog New!     FAQ     Premsa     Login  

HD 10086


Contingut

Imatges

Carregar la teva Imatge

DSS Images   Other Images


Articles Relacionats

Absolute Physical Calibration in the Infrared
We determine an absolute calibration for the Multiband ImagingPhotometer for Spitzer 24 μm band and recommend adjustments to thepublished calibrations for Two Micron All Sky Survey (2MASS), InfraredArray Camera (IRAC), and IRAS photometry to put them on the same scale.We show that consistent results are obtained by basing the calibrationon either an average A0V star spectral energy distribution (SED), or byusing the absolutely calibrated SED of the Sun in comparison withsolar-type stellar photometry (the solar analog method). After therejection of a small number of stars with anomalous SEDs (or badmeasurements), upper limits of ~1.5% root mean square (rms) are placedon the intrinsic infrared (IR) SED variations in both A-dwarf andsolar-type stars. These types of stars are therefore suitable asgeneral-purpose standard stars in the IR. We provide absolutelycalibrated SEDs for a standard zero magnitude A star and for the Sun toallow extending this work to any other IR photometric system. They allowthe recommended calibration to be applied from 1 to 25 μm with anaccuracy of ~2%, and with even higher accuracy at specific wavelengthssuch as 2.2, 10.6, and 24 μm, near which there are directmeasurements. However, we confirm earlier indications that Vega does notbehave as a typical A0V star between the visible and the IR, making itproblematic as the defining star for photometric systems. Theintegration of measurements of the Sun with those of solar-type starsalso provides an accurate estimate of the solar SED from 1 through 30μm, which we show agrees with theoretical models.

Vertical distribution of Galactic disk stars. IV. AMR and AVR from clump giants
We present the parameters of 891 stars, mostly clump giants, includingatmospheric parameters, distances, absolute magnitudes, spatialvelocities, galactic orbits and ages. One part of this sample consistsof local giants, within 100 pc, with atmospheric parameters eitherestimated from our spectroscopic observations at high resolution andhigh signal-to-noise ratio, or retrieved from the literature. The otherpart of the sample includes 523 distant stars, spanning distances up to1 kpc in the direction of the North Galactic Pole, for which we haveestimated atmospheric parameters from high resolution but lowsignal-to-noise Echelle spectra. This new sample is kinematicallyunbiased, with well-defined boundaries in magnitude and colours. Werevisit the basic properties of the Galactic thin disk as traced byclump giants. We find the metallicity distribution to be different fromthat of dwarfs, with fewer metal-rich stars. We find evidence for avertical metallicity gradient of -0.31 dex kpc-1 and for atransition at ~4-5 Gyr in both the metallicity and velocities. Theage-metallicity relation (AMR), which exhibits a very low dispersion,increases smoothly from 10 to 4 Gyr, with a steeper increase for youngerstars. The age-velocity relation (AVR) is characterized by thesaturation of the V and W dispersions at 5 Gyr, and continuous heatingin U.

How Dry is the Brown Dwarf Desert? Quantifying the Relative Number of Planets, Brown Dwarfs, and Stellar Companions around Nearby Sun-like Stars
Sun-like stars have stellar, brown dwarf, and planetary companions. Tohelp constrain their formation and migration scenarios, we analyze theclose companions (orbital period <5 yr) of nearby Sun-like stars. Byusing the same sample to extract the relative numbers of stellar, browndwarf, and planetary companions, we verify the existence of a very drybrown dwarf desert and describe it quantitatively. With decreasing mass,the companion mass function drops by almost 2 orders of magnitude from 1Msolar stellar companions to the brown dwarf desert and thenrises by more than an order of magnitude from brown dwarfs toJupiter-mass planets. The slopes of the planetary and stellar companionmass functions are of opposite sign and are incompatible at the 3σ level, thus yielding a brown dwarf desert. The minimum number ofcompanions per unit interval in log mass (the driest part of the desert)is at M=31+25-18MJ. Approximately 16%of Sun-like stars have close (P<5 yr) companions more massive thanJupiter: 11%+/-3% are stellar, <1% are brown dwarf, and 5%+/-2% aregiant planets. The steep decline in the number of companions in thebrown dwarf regime, compared to the initial mass function of individualstars and free-floating brown dwarfs, suggests either a differentspectrum of gravitational fragmentation in the formation environment orpost-formation migratory processes disinclined to leave brown dwarfs inclose orbits.

The N2K Consortium. V. Identifying Very Metal-rich Stars with Low-Resolution Spectra: Finding Planet-Search Targets
We present empirical calibrations that provide estimates of stellarmetallicity, effective temperature, and surface gravity as a function ofLick IDS indices. These calibrations have been derived from a trainingset of 261 stars for which (1) high-precision measurements of [Fe/H],Teff, and logg have been made using spectral-synthesisanalysis of HIRES spectra, and (2) Lick indices have also been measured.Estimation of atmospheric parameters with low-resolution spectroscopyrather than photometry has the advantage of producing a highly accuratemetallicity calibration, and requires only one observation per star. Ourcalibrations have identified a number of bright (V<9) metal-richstars that are now being screened for hot-Jupiter-type planets. Usingthe Yonsei-Yale stellar models, we show that the calibrations providedistance estimates accurate to ~20% for nearby stars. We have alsoinvestigated the possibility of constructing a ``planeticity''calibration to predict the presence of planets based on stellarabundance ratios but find no evidence that a convincing relation of thistype can be established. High metallicity remains the best singleindicator that a given star is likely to harbor extrasolar planets.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Kinematics, ages and metallicities for F- and G-type stars in the solar neighbourhood
A new metallicity distribution and an age-metallicity relation arepresented for 437 nearby F and G turn-off and sub-giant stars selectedfrom radial velocity data of Nidever et al. Photometric metallicitiesare derived from uvby- Hβ photometry, and the stellar ages from theisochrones of Bergbusch & VandenBerg as transformed to uvbyphotometry using the methods of Clem et al.The X (stellar population) criterion of Schuster et al., which combinesboth kinematic and metallicity information, provides 22 thick-discstars. σW= 32 +/- 5 km s-1,= 154 +/- 6 km s-1 and<[M/H]>=-0.55 +/- 0.03 dex for these thick-disc stars, which is inagreement with values from previous studies of the thick disc.α-element abundances which are available for some of thesethick-disc stars show the typical α-element signatures of thethick disc, supporting the classification procedure based on the Xcriterion.Both the scatter in metallicity at a given age and the presence of old,metal-rich stars in the age-metallicity relation make it difficult todecide whether or not an age-metallicity relation exists for the olderthin-disc stars. For ages greater than 3 Gyr, our results agree with theother recent studies that there is almost no correlation between age andmetallicity, Δ([M/Fe])/Δ(age) =-0.01 +/- 0.005 dexGyr-1. For the 22 thick-disc stars there is a range in agesof 7-8 Gyr, but again almost no correlation between age and metallicity.For the subset of main-sequence stars with extra-solar planets, theage-metallicity relation is very similar to that of the total sample,very flat, the main difference being that these stars are mostlymetal-rich, [M/H]>~-0.2 dex. However, two of these stars have[M/H]~-0.6 dex and have been classified as thick-disc stars. As for thetotal sample, the range in ages for these stars with extra-solarplanetary systems is considerable with a nearly uniform distributionover 3 <~ age <~ 13 Gyr.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

Can Life Develop in the Expanded Habitable Zones around Red Giant Stars?
We present some new ideas about the possibility of life developingaround subgiant and red giant stars. Our study concerns the temporalevolution of the habitable zone. The distance between the star and thehabitable zone, as well as its width, increases with time as aconsequence of stellar evolution. The habitable zone moves outward afterthe star leaves the main sequence, sweeping a wider range of distancesfrom the star until the star reaches the tip of the asymptotic giantbranch. Currently there is no clear evidence as to when life actuallyformed on the Earth, but recent isotopic data suggest life existed atleast as early as 7×108 yr after the Earth was formed.Thus, if life could form and evolve over time intervals from5×108 to 109 yr, then there could behabitable planets with life around red giant stars. For a 1Msolar star at the first stages of its post-main-sequenceevolution, the temporal transit of the habitable zone is estimated to beseveral times 109 yr at 2 AU and around 108 yr at9 AU. Under these circumstances life could develop at distances in therange 2-9 AU in the environment of subgiant or giant stars, and in thefar distant future in the environment of our own solar system. After astar completes its first ascent along the red giant branch and the Heflash takes place, there is an additional stable period of quiescent Hecore burning during which there is another opportunity for life todevelop. For a 1 Msolar star there is an additional109 yr with a stable habitable zone in the region from 7 to22 AU. Space astronomy missions, such as proposed for the TerrestrialPlanet Finder (TPF) and Darwin, that focus on searches for signatures oflife on extrasolar planets, should also consider the environments ofsubgiants and red giant stars as potentially interesting sites forunderstanding the development of life. We performed a preliminaryevaluation of the difficulty of interferometric observations of planetsaround red giant stars compared to a main-sequence star environment. Weshow that pathfinder missions for TPF and Darwin, such as Eclipse andFKSI, have sufficient angular resolution and sensitivity to search forhabitable planets around some of the closest evolved stars of thesubgiant and red giant class.

The Planet-Metallicity Correlation
We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.

A Catalog of Northern Stars with Annual Proper Motions Larger than 0.15" (LSPM-NORTH Catalog)
The LSPM catalog is a comprehensive list of 61,977 stars north of theJ2000 celestial equator that have proper motions larger than 0.15"yr-1 (local-background-stars frame). The catalog has beengenerated primarily as a result of our systematic search for high propermotion stars in the Digitized Sky Surveys using our SUPERBLINK software.At brighter magnitudes, the catalog incorporates stars and data from theTycho-2 Catalogue and also, to a lesser extent, from the All-SkyCompiled Catalogue of 2.5 million stars. The LSPM catalog considerablyexpands over the old Luyten (Luyten Half-Second [LHS] and New LuytenTwo-Tenths [NLTT]) catalogs, superseding them for northern declinations.Positions are given with an accuracy of <~100 mas at the 2000.0epoch, and absolute proper motions are given with an accuracy of ~8 masyr-1. Corrections to the local-background-stars propermotions have been calculated, and absolute proper motions in theextragalactic frame are given. Whenever available, we also give opticalBT and VT magnitudes (from Tycho-2, ASCC-2.5),photographic BJ, RF, and IN magnitudes(from USNO-B1 catalog), and infrared J, H, and Ks magnitudes(from 2MASS). We also provide an estimated V magnitude and V-J color fornearly all catalog entries, useful for initial classification of thestars. The catalog is estimated to be over 99% complete at high Galacticlatitudes (|b|>15deg) and over 90% complete at lowGalactic latitudes (|b|>15deg), down to a magnitudeV=19.0, and has a limiting magnitude V=21.0. All the northern starslisted in the LHS and NLTT catalogs have been reidentified, and theirpositions, proper motions, and magnitudes reevaluated. The catalog alsolists a large number of completely new objects, which promise to expandvery significantly the census of red dwarfs, subdwarfs, and white dwarfsin the vicinity of the Sun.Based on data mining of the Digitized Sky Surveys (DSSs), developed andoperated by the Catalogs and Surveys Branch of the Space TelescopeScience Institute (STScI), Baltimore.Developed with support from the National Science Foundation (NSF), aspart of the NASA/NSF NStars program.

A new Böhm-Vitense gap in the temperature range 5560 to 5610 K in the main sequence hm-Vitense gap in the main sequence
Highly precise temperatures (σ = 10-15 K) have been determinedfrom line depth ratios for a set of 248 F-K field dwarfs of about solarmetallicity (-0.5 < [Fe/H] < +0.4), based on high resolution (R=42000), high S/N echelle spectra. A new gap has been discovered in thedistribution of stars on the Main Sequence in the temperature range 5560to 5610 K. This gap coincides with a jump in the microturbulent velocityVt and the well-known Li depression near 5600 K in fielddwarfs and open clusters. As the principal cause of the observeddiscontinuities in stellar properties we propose the penetration of theconvective zone into the inner layers of stars slightly less massivethan the Sun and related to it, a change in the temperature gradient.Based on spectra collected with the ELODIE spectrograph at the 1.93-mtelescope of the Observatoire de Haute-Provence (France).Full Table 1 is only available in electronic form athttp://www.edpsciences.org

Chromospheric Ca II Emission in Nearby F, G, K, and M Stars
We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 Parsecs: The Northern Sample. I.
We have embarked on a project, under the aegis of the Nearby Stars(NStars)/Space Interferometry Mission Preparatory Science Program, toobtain spectra, spectral types, and, where feasible, basic physicalparameters for the 3600 dwarf and giant stars earlier than M0 within 40pc of the Sun. In this paper, we report on the results of this projectfor the first 664 stars in the northern hemisphere. These resultsinclude precise, homogeneous spectral types, basic physical parameters(including the effective temperature, surface gravity, and overallmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. Observed and derived data presented in this paper arealso available on the project's Web site.

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

Multiplicity among solar-type stars. III. Statistical properties of the F7-K binaries with periods up to 10 years
Two CORAVEL radial velocity surveys - one among stars in the solarneighbourhood, the other in the Pleiades and in Praesepe - are merged toderive the statistical properties of main-sequence binaries withspectral types F7 to K and with periods up to 10 years. A sample of 89spectroscopic orbits was finally obtained. Among them, 52 relate to afree-of-bias selection of 405 stars (240 field stars and 165 clusterstars). The statistics corrected for selection effects yield thefollowing results: (1) No discrepancy is found between the binariesamong field stars and the binaries in open cluster. The distributions ofmass ratios, of periods, the period-eccentricity diagram and the binaryfrequencies are all within the same error intervals. (2) Thedistribution of mass ratios presents two maxima: a broad peak from q ~0.2 to q ~ 0.7, and a sharp peak for q > 0.8 (twins). Both arepresent among the early-type as well as among the late-type part of thesample, indicating a scale-free formation process. The peak for q >0.8 gradually decreases when long-period binaries are considered.Whatever their periods, the twins have eccentricities significantlylower than the other binaries, confirming a difference in the formationprocesses. Twins could be generated by in situ formation followed byaccretion from a gaseous envelope, whereas binaries with intermediatemass ratios could be formed at wide separations, but they are madecloser by migration led by interactions with a circumbinary disk. (3)The frequency of binaries with P<10 years is about 14%. (4) About0.3% of binaries are expected to appear as false positives in a planetsearch. Therefore, the frequency of planetary systems among stars ispresently 7+4-2%. The extension of thedistribution of mass ratios in the planetary range would result in avery sharp and very high peak, well separated from the binary stars withlow mass ratios. Based on photoelectric radial-velocity measurementscollected at Haute-Provence observatory and on observations made withthe ESA Hipparcos astrometry satellite.

Speckle Observations of Binary Stars with the WIYN Telescope. III. A Partial Survey of A, F, and G Dwarfs
Two hundred thirty nearby main-sequence stars with spectral types in therange of A to G have been observed by way of speckle interferometryusing the WIYN 3.5 m telescope at Kitt Peak, Arizona. The stars had noprevious mention of duplicity in the literature. Of those observed, 14showed clear evidence of a companion, and 63 were classified assuspected nonsingle based on a power spectrum analysis. The remainingstars discussed show no evidence of duplicity to the limit of thedetection system in high-quality observations. The WIYN Observatory is ajoint facility of the University of Wisconsin-Madison, IndianaUniversity, Yale University, and the National Optical AstronomyObservatory.

Radial Velocities for 889 Late-Type Stars
We report radial velocities for 844 FGKM-type main-sequence and subgiantstars and 45 K giants, most of which had either low-precision velocitymeasurements or none at all. These velocities differ from the standardstars of Udry et al. by 0.035 km s-1 (rms) for the 26 FGKstandard stars in common. The zero point of our velocities differs fromthat of Udry et al.: =+0.053km s-1. Thus, these new velocities agree with the best knownstandard stars both in precision and zero point, to well within 0.1 kms-1. Nonetheless, both these velocities and the standardssuffer from three sources of systematic error, namely, convectiveblueshift, gravitational redshift, and spectral type mismatch of thereference spectrum. These systematic errors are here forced to be zerofor G2 V stars by using the Sun as reference, with Vesta and day sky asproxies. But for spectral types departing from solar, the systematicerrors reach 0.3 km s-1 in the F and K stars and 0.4 kms-1 in M dwarfs. Multiple spectra were obtained for all 889stars during 4 years, and 782 of them exhibit velocity scatter less than0.1 km s-1. These stars may serve as radial velocitystandards if they remain constant in velocity. We found 11 newspectroscopic binaries and report orbital parameters for them. Based onobservations obtained at the W. M. Keck Observatory, which is operatedjointly by the University of California and the California Institute ofTechnology, and on observations obtained at the Lick Observatory, whichis operated by the University of California.

A revision of the solar neighbourhood metallicity distribution
We present a revised metallicity distribution of dwarfs in the solarneighbourhood. This distribution is centred on solar metallicity. Weshow that previous metallicity distributions, selected on the basis ofspectral type, are biased against stars with solar metallicity orhigher. A selection of G-dwarf stars is inherently biased againstmetal-rich stars and is not representative of the solar neighbourhoodmetallicity distribution. Using a sample selected on colour, we obtain adistribution where approximately half the stars in the solarneighbourhood have metallicities higher than [Fe/H]=0. The percentage ofmid-metal-poor stars ([Fe/H]<-0.5) is approximately 4 per cent, inagreement with present estimates of the thick disc. In order to have ametallicity distribution comparable to chemical evolution modelpredictions, we convert the star fraction to mass fraction, and showthat another bias against metal-rich stars affects dwarf metallicitydistributions, due to the colour (or spectral type) limits of thesamples. Reconsidering the corrections resulting from the increasingthickness of the stellar disc with age, we show that the simpleclosed-box model with no instantaneous recycling approximation gives areasonable fit to the observed distribution. Comparisons with theage-metallicity relation and abundance ratios suggest that the simpleclosed-box model may be a viable model of the chemical evolution of theGalaxy at solar radius.

Speckle Interferometry of New and Problem Hipparcos Binaries. II. Observations Obtained in 1998-1999 from McDonald Observatory
The Hipparcos satellite made measurements of over 9734 known doublestars, 3406 new double stars, and 11,687 unresolved but possible doublestars. The high angular resolution afforded by speckle interferometrymakes it an efficient means to confirm these systems from the ground,which were first discovered from space. Because of its coverage of adifferent region of angular separation-magnitude difference(ρ-Δm) space, speckle interferometry also holds promise toascertain the duplicity of the unresolved Hipparcos ``problem'' stars.Presented are observations of 116 new Hipparcos double stars and 469Hipparcos ``problem stars,'' as well as 238 measures of other doublestars and 246 other high-quality nondetections. Included in these areobservations of double stars listed in the Tycho-2 Catalogue andpossible grid stars for the Space Interferometry Mission.

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Multiplicity among solar-type stars in the solar neighbourhood. II - Distribution of the orbital elements in an unbiased sample
An unbiased sample of 164 primary G-dwarf stars in the solarneighborhood are studied with the aid of 4200 radial velocities obtainedduring almost 13 yrs. Several present-day distributions of the orbitalelements are derived. For systems with M(2)/M(1) above 0.1 in the nearbyG-dwarf sample, the following results are obtained: (1) The orbitalperiod distribution is unimodal and can be approximated by aGaussian-type relation with a median period of 180 yrs. (2) The shortbinaries are circularized up to orbital periods of about 11 d due to thetidal evolution effects - a result compatible with the mean age of theGalactic disk. (3) The tight binaries not affected by tidal effects (inthe range between 11 and 1000 d) may reflect the initial binaryformation process, and they have a mean eccentricity of 0.31 +/-0.04.For systems with M(2)/M(1) not greater than 0.1, the proportion of browndwarf companions among the IAU velocity standards is estimated at 10percent of the primaries, a value in good agreement with that found inthe G-dwarf sample.

Multiplicity among solar type stars in the solar neighbourhood. I - CORAVEL radial velocity observations of 291 stars
Results obtained on stellar radial velocity of 291 stars of spectraltypes FO to G9, measured with CORAVEL spectrometers at theHaute-Provence and la Silla Observatories, are discussed. The paperdescribes the observational procedure, reduction technique, andvelocity-data calibration and presents a list of individualradial-velocity measurements. Few histograms describing the survey arealso presented.

The rotation velocities and metallicities of dwarf stars in the solar neighborhood
The rotation velocities (or upper limits) of 260 dwarfs from the Gliese(1969) catalog are determined using a photoelectric radial velocityscanner. The dependence of the correlation dip equivalent width (thestrength of metal lines) on the color (B-V) and metallicity is examined.Given the color and equivalent width, the method can determine the Fe/Habundance ratio with an accuracy up to 0.2.

UBVRI photoelectric photometry of nearby stars
In order to complete the photometric data of the Gliese (1969) 'Catalogof Nearby Stars', and in addition use these data for the Hipparcos spaceastrometry mission, program stars have been selected from the catalogand its supplements on the basis of their having an incomplete set ofUBVRI photometric data of magnitude lower than 13. The program developedrejects determinations of any magnitude or color index having a residualgreater than 2(sigma-prime), where sigma-prime is the standard deviationfor the determinations of unit weight.

The degree of completeness of nearby stars and the stellar luminosity function
The aim of this study is the determination of the degree of completenessof nearby star catalogs for stars of as many spectral classes aspossible, by means of a novel method which eliminates giants, subgiantsand white dwarfs from the data sample. It is shown that main-sequencestars earlier than M0 are essentially complete and identified withinabout 20 pc of the sun, by determining V/V(max) as a function of B-V forthe main sequence stars. The luminosity function produced by the M0stars has been known to differ from the commonly accepted and smoothedluminosity function, which increases monotonically with absolutemagnitude, between the absolute visual magnitudes +6 and +9. It isconcluded that the deficiency between these magnitude limits is real,suggesting either (1) that stars of masses equivalent to this absolutemagnitude range are rarer than those of greater mass, or (2) that themass-luminosity relation is not as linear as is believed at present.

Some Cross-Reference Lists for the Catalog of Possible Nearby Stars
Not Available

Catalog of Indidual Radial Velocities, 0h-12h, Measured by Astronomers of the Mount Wilson Observatory
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1970ApJS...19..387A&db_key=AST

Photometric behavior of magnetic stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1968ApJ...154..945S&db_key=AST

Vitesses radiales dans 4 champs de petite latitude galactique.
Not Available

Enviar un nou article


Enllaços Relacionats

  • - No s'ha trobat enllaços -
Enviar un nou enllaç


Membre dels grups següents:


Dades d'Observació i Astrometria

Constel·lació:Andromeda
Ascensió Recta:01h39m36.02s
Declinació:+45°52'40.0"
Magnitud Aparent:6.621
Distancia:21.4 parsecs
Moviment propi RA:216.4
Moviment propi Dec:-228.1
B-T magnitude:7.455
V-T magnitude:6.69

Catàlegs i designacions:
Noms Propis   (Edit)
HD 1989HD 10086
TYCHO-2 2000TYC 3278-1292-1
USNO-A2.0USNO-A2 1350-01568940
HIPHIP 7734

→ Sol·licitar més catàlegs i designacions de VizieR