Inici     Començant     Sobreviure a l'Univers    
Inhabited Sky
    News@Sky     Astro Fotografia     La Col·lecció     Fòrum     Blog New!     FAQ     Premsa     Login  

HD 38858


Contingut

Imatges

Carregar la teva Imatge

DSS Images   Other Images


Articles Relacionats

Abundances of refractory elements in the atmospheres of stars with extrasolar planets
Aims.This work presents a uniform and homogeneous study of chemicalabundances of refractory elements in 101 stars with and 93 without knownplanetary companions. We carry out an in-depth investigation of theabundances of Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Na, Mg and Al. The newcomparison sample, spanning the metallicity range -0.70< [Fe/H]<0.50, fills the gap that previously existed, mainly at highmetallicities, in the number of stars without known planets.Methods.Weused an enlarged set of data including new observations, especially forthe field "single" comparison stars . The line list previously studiedby other authors was improved: on average we analysed 90 spectral linesin every spectrum and carefully measured more than 16 600 equivalentwidths (EW) to calculate the abundances.Results.We investigate possibledifferences between the chemical abundances of the two groups of stars,both with and without planets. The results are globally comparable tothose obtained by other authors, and in most cases the abundance trendsof planet-host stars are very similar to those of the comparison sample.Conclusions.This work represents a step towards the comprehension ofrecently discovered planetary systems. These results could also beuseful for verifying galactic models at high metallicities andconsequently improve our knowledge of stellar nucleosynthesis andgalactic chemical evolution.

Prospects for population synthesis in the H band: NeMo grids of stellar atmospheres compared to observations
Context: .For applications in population synthesis, libraries oftheoretical stellar spectra are often considered an alternative totemplate libraries of observed spectra, because they allow a completesampling of stellar parameters. Most of the attention in publishedtheoretical spectral libraries has been devoted to the visual wavelengthrange.Aims.The goal of the present work is to explore the near-infraredrange where few observed fully calibrated spectra and no theoreticallibraries are available.Methods.We make a detailed comparison oftheoretical spectra in the range 1.57-1.67 μm for spectral types fromA to early M and for giant and dwarf stars, with observed stellarspectra at resolutions around 3000, which would be sufficient todisentangle the different groups of late-type stars. We selected theNeMo grids of stellar atmospheres to perform this comparison.Results.Wefirst demonstrate that observed spectral flux distributions can bematched very well with theoretical ones for almost the entire parameterrange covered by the NeMo grids at moderate resolution in the visualrange. In the infrared range, although the overall shape of the observedflux distributions still matches reasonably well, the individualspectral features are reproduced by the theoretical spectra only forstars earlier than mid F type. For later spectral types the differencesincrease, and theoretical spectra of K type stars have systematicallyweaker line features than those found in observations. Thesediscrepancies are traced back to stem primarily from incomplete data onneutral atomic lines, although some of them are also related tomolecules.Conclusions.Libraries of theoretical spectra for A to early Mtype stars can be successfully used in the visual regions for populationsynthesis, but their application in the infrared is restricted to earlyand intermediate type stars. Improving atomic data in the near infraredis a key element in making the construction of reliable libraries ofstellar spectra feasible in the infrared.

Oxygen abundances in planet-harbouring stars. Comparison of different abundance indicators
We present a detailed and uniform study of oxygen abundances in 155solar type stars, 96 of which are planet hosts and 59 of which form partof a volume-limited comparison sample with no known planets. EWmeasurements were carried out for the [O I] 6300 Å line and the OI triplet, and spectral synthesis was performed for several OH lines.NLTE corrections were calculated and applied to the LTE abundanceresults derived from the O I 7771-5 Å triplet. Abundances from [OI], the O I triplet and near-UV OH were obtained in 103, 87 and 77dwarfs, respectively. We present the first detailed and uniformcomparison of these three oxygen indicators in a large sample ofsolar-type stars. There is good agreement between the [O/H] ratios fromforbidden and OH lines, while the NLTE triplet shows a systematicallylower abundance. We found that discrepancies between OH, [O I] and the OI triplet do not exceed 0.2 dex in most cases. We have studied abundancetrends in planet host and comparison sample stars, and no obviousanomalies related to the presence of planets have been detected. Allthree indicators show that, on average, [O/Fe] decreases with [Fe/H] inthe metallicity range -0.8< [Fe/H] < 0.5. The planet host starspresent an average oxygen overabundance of 0.1-0.2 dex with respect tothe comparison sample.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

Single-Visit Photometric and Obscurational Completeness
We report a method that uses ``completeness'' to estimate the number ofextrasolar planets discovered by an observing program with adirect-imaging instrument. We develop a completeness function forEarth-like planets on ``habitable'' orbits for an instrument with acentral field obscuration, uniform sensitivity in an annular detectionzone, and limiting sensitivity that is expressed as a ``deltamagnitude'' with respect to the star, determined by systematic effects(given adequate exposure time). We demonstrate our method of estimationby applying it to our understanding of the coronagraphic version of theTerrestrial Planet Finder (TPF-C) mission as of 2004 October. Weestablish an initial relationship between the size, quality, andstability of the instrument's optics and its ability to meet missionscience requirements. We provide options for increasing the fidelity andversatility of the models on which our method is based, and we discusshow the method could be extended to model the TPF-C mission as a wholeto verify that its design can meet the science requirements.

The Planet-Metallicity Correlation
We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.

Sulphur abundance in Galactic stars
We investigate sulphur abundance in 74 Galactic stars by using highresolution spectra obtained at ESO VLT and NTT telescopes. For the firsttime the abundances are derived, where possible, from three opticalmultiplets: Mult. 1, 6, and 8. By combining our own measurements withdata in the literature we assemble a sample of 253 stars in themetallicity range -3.2  [Fe/H]  +0.5. Two important features,which could hardly be detected in smaller samples, are obvious from thislarge sample: 1) a sizeable scatter in [S/Fe] ratios around [Fe/H]˜-1; 2) at low metallicities we observe stars with [S/Fe]˜ 0.4, aswell as stars with higher [S/Fe] ratios. The latter do not seem to bekinematically different from the former ones. Whether the latter findingstems from a distinct population of metal-poor stars or simply from anincreased scatter in sulphur abundances remains an open question.

Abundances of Na, Mg and Al in stars with giant planets
We present Na, Mg and Al abundances in a set of 98 stars with knowngiant planets, and in a comparison sample of 41 “single”stars. The results show that the [X/H] abundances (with X = Na, Mg andAl) are, on average, higher in stars with giant planets, a resultsimilar to the one found for iron. However, we did not find any strongdifference in the [X/Fe] ratios, for a fixed [Fe/H], between the twosamples of stars in the region where the samples overlap. The data wasused to study the Galactic chemical evolution trends for Na, Mg and Aland to discuss the possible influence of planets on this evolution. Theresults, similar to those obtained by other authors, show that the[X/Fe] ratios all decrease as a function of metallicity up to solarvalues. While for Mg and Al this trend then becomes relatively constant,for Na we find indications of an upturn up to [Fe/H] values close to0.25 dex. For metallicities above this value the [Na/Fe] becomesconstant.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

A near-infrared stellar spectral library: I. H-band spectra.
This paper presents the H band near-infrared (NIR) spectral library of135 solar type stars covering spectral types O5-M3 and luminosityclasses I-V as per MK classification. The observations were carried outwith 1.2 meter Gurushikhar Infrared Telescope (GIRT), at Mt. Abu, Indiausing a NICMOS3 HgCdTe 256 x 256 NIR array based spectrometer. Thespectra have a moderate resolution of 1000 (about 16 A) at the H bandand have been continuum shape corrected to their respective effectivetemperatures. This library and the remaining ones in J and K bands oncereleased will serve as an important database for stellar populationsynthesis and other applications in conjunction with the newly formedlarge optical coude feed stellar spectral library of Valdes et al.(2004). The complete H-Band library is available online at: http://vo.iucaa.ernet.in/~voi/NIR_Header.html

Chromospheric Ca II Emission in Nearby F, G, K, and M Stars
We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.

Resolved Inner Disks around Herbig Ae/Be Stars
We have observed 14 Herbig Ae/Be (HAEBE) sources with the long-baselinenear-IR Palomar Testbed Interferometer. All except two sources areresolved at 2.2 μm, with angular sizes generally <~5 mas. Wedetermine the size scales and orientations of the 2.2 μm emissionusing various models: uniform disks, Gaussians, uniform rings, flataccretion disks with inner holes, and flared disks with puffed-up innerrims. Although it is difficult to distinguish different radialdistributions, we are able to place firm constraints on the inclinationsof most sources; seven objects display significantly inclinedmorphologies. The inner disk inclinations derived from our near-IR dataare generally compatible with the outer disk geometries inferred frommillimeter interferometric observations, implying that HAEBE disks arenot significantly warped. Using the derived inner disk sizes andinclinations, we compute the spectral energy distributions (SEDs) fortwo simple physical disk models and compare these with observed SEDscompiled from the literature and new near-IR photometry. Whilegeometrically flat accretion disk models are consistent with the datafor the earliest spectral types in our sample (MWC 297, V1685 Cyg, andMWC 1080), the later type sources are explained better through modelsincorporating puffed-up inner disk walls. The different inner diskgeometries may indicate different accretion mechanisms for early- andlate-type HAEBE stars.

Synthetic Lick Indices and Detection of α-enhanced Stars. II. F, G, and K Stars in the -1.0 < [Fe/H] < +0.50 Range
We present an analysis of 402 F, G, and K solar neighborhood stars, withaccurate estimates of [Fe/H] in the range -1.0 to +0.5 dex, aimed at thedetection of α-enhanced stars and at the investigation of theirkinematical properties. The analysis is based on the comparison of 571sets of spectral indices in the Lick/IDS system, coming from fourdifferent observational data sets, with synthetic indices computed withsolar-scaled abundances and with α-element enhancement. We useselected combinations of indices to single out α-enhanced starswithout requiring previous knowledge of their main atmosphericparameters. By applying this approach to the total data set, we obtain alist of 60 bona fide α-enhanced stars and of 146 stars withsolar-scaled abundances. The properties of the detected α-enhancedand solar-scaled abundance stars with respect to their [Fe/H] values andkinematics are presented. A clear kinematic distinction betweensolar-scaled and α-enhanced stars was found, although a one-to-onecorrespondence to ``thin disk'' and ``thick disk'' components cannot besupported with the present data.

0.8-13 Micron Spectroscopy of V838 Monocerotis and a Model for Its Emission
We report on the results of a number of infrared spectra (0.8-2.5,2.1-4.6, and 3-14 μm) of V838 Monocerotis, taken from a short timeafter discovery in 2002 January to about 14 months later, in early 2003.The spectrum evolved dramatically, changing from a quasi-photosphericstellar spectrum with weak atomic emission lines (some with P Cygniprofiles) to one showing a wide range of deep absorption featuresindicative of a cool, extended atmosphere with a circumstellar dustshell. The early spectra showed lines of s-process elements, such as SrII and Ba I. The later spectra showed absorption by gaseousH2O, CO, AlO, TiO, SiO, SO2, OH, VO, and SH, aswell as a complex of emission near 10 μm reminiscent of silicateemission, with a central absorbing feature at 10.3 μm. Thus, V838 Monappears to be oxygen-rich. A simple, spherically symmetric model of thesystem involving a central star with a two-component expandingcircumstellar shell is presented that is able to explain the majormolecular features and spectral energy distribution in the object's latestages. The derived shell mass and distance are 0.04 Msolarand 9.2 kpc, respectively.

Nearby stars of the Galactic disk and halo. III.
High-resolution spectroscopic observations of about 150 nearby stars orstar systems are presented and discussed. The study of these and another100 objects of the previous papers of this series implies that theGalaxy became reality 13 or 14 Gyr ago with the implementation of amassive, rotationally-supported population of thick-disk stars. The veryhigh star formation rate in that phase gave rise to a rapid metalenrichment and an expulsion of gas in supernovae-driven Galactic winds,but was followed by a star formation gap for no less than three billionyears at the Sun's galactocentric distance. In a second phase, then, thethin disk - our ``familiar Milky Way'' - came on stage. Nowadays ittraces the bright side of the Galaxy, but it is also embedded in a hugecoffin of dead thick-disk stars that account for a large amount ofbaryonic dark matter. As opposed to this, cold-dark-matter-dominatedcosmologies that suggest a more gradual hierarchical buildup throughmergers of minor structures, though popular, are a poor description forthe Milky Way Galaxy - and by inference many other spirals as well - if,as the sample implies, the fossil records of its long-lived stars do notstick to this paradigm. Apart from this general picture that emergeswith reference to the entire sample stars, a good deal of the presentwork is however also concerned with detailed discussions of manyindividual objects. Among the most interesting we mention the bluestraggler or merger candidates HD 165401 and HD 137763/HD 137778, thelikely accretion of a giant planet or brown dwarf on 59 Vir in itsrecent history, and HD 63433 that proves to be a young solar analog at\tau˜200 Myr. Likewise, the secondary to HR 4867, formerly suspectednon-single from the Hipparcos astrometry, is directly detectable in thehigh-resolution spectroscopic tracings, whereas the visual binary \chiCet is instead at least triple, and presumably even quadruple. Withrespect to the nearby young stars a complete account of the Ursa MajorAssociation is presented, and we provide as well plain evidence foranother, the ``Hercules-Lyra Association'', the likely existence ofwhich was only realized in recent years. On account of its rotation,chemistry, and age we do confirm that the Sun is very typical among itsG-type neighbors; as to its kinematics, it appears however not unlikelythat the Sun's known low peculiar space velocity could indeed be thecause for the weak paleontological record of mass extinctions and majorimpact events on our parent planet during the most recent Galactic planepassage of the solar system. Although the significance of thiscorrelation certainly remains a matter of debate for years to come, wepoint in this context to the principal importance of the thick disk fora complete census with respect to the local surface and volumedensities. Other important effects that can be ascribed to this darkstellar population comprise (i) the observed plateau in the shape of theluminosity function of the local FGK stars, (ii) a small thoughsystematic effect on the basic solar motion, (iii) a reassessment of theterm ``asymmetrical drift velocity'' for the remainder (i.e. the thindisk) of the stellar objects, (iv) its ability to account for the bulkof the recently discovered high-velocity blue white dwarfs, (v) itsmajor contribution to the Sun's ˜220 km s-1 rotationalvelocity around the Galactic center, and (vi) the significant flatteningthat it imposes on the Milky Way's rotation curve. Finally we note ahigh multiplicity fraction in the small but volume-complete local sampleof stars of this ancient population. This in turn is highly suggestivefor a star formation scenario wherein the few existing single stellarobjects might only arise from either late mergers or the dynamicalejection of former triple or higher level star systems.

Are beryllium abundances anomalous in stars with giant planets?
In this paper we present beryllium (Be) abundances in a large sample of41 extra-solar planet host stars, and for 29 stars without any knownplanetary-mass companion, spanning a large range of effectivetemperatures. The Be abundances were derived through spectral synthesisdone in standard Local Thermodynamic Equilibrium, using spectra obtainedwith various instruments. The results seem to confirm that overall,planet-host stars have ``normal'' Be abundances, although a small, butnot significant, difference might be present. This result is discussed,and we show that this difference is probably not due to any stellar``pollution'' events. In other words, our results support the idea thatthe high-metal content of planet-host stars has, overall, a``primordial'' origin. However, we also find a small subset ofplanet-host late-F and early-G dwarfs that might have higher thanaverage Be abundances. The reason for the offset is not clear, and mightbe related either to the engulfment of planetary material, to galacticchemical evolution effects, or to stellar-mass differences for stars ofsimilar temperature.Based on observations collected with the VLT/UT2 Kueyen telescope(Paranal Observatory, ESO, Chile) using the UVES spectrograph (Observingruns 66.C-0116 A, 66.D-0284 A, and 68.C-0058 A), and with the WilliamHerschel and Nordic Optical Telescopes, operated on the island of LaPalma by the Isaac Newton Group and jointly by Denmark, Finland,Iceland, and Norway, respectively, in the Spanish Observatorio del Roquede los Muchachos of the Instituto de Astrofísica de Canarias.

A new Böhm-Vitense gap in the temperature range 5560 to 5610 K in the main sequence hm-Vitense gap in the main sequence
Highly precise temperatures (σ = 10-15 K) have been determinedfrom line depth ratios for a set of 248 F-K field dwarfs of about solarmetallicity (-0.5 < [Fe/H] < +0.4), based on high resolution (R=42000), high S/N echelle spectra. A new gap has been discovered in thedistribution of stars on the Main Sequence in the temperature range 5560to 5610 K. This gap coincides with a jump in the microturbulent velocityVt and the well-known Li depression near 5600 K in fielddwarfs and open clusters. As the principal cause of the observeddiscontinuities in stellar properties we propose the penetration of theconvective zone into the inner layers of stars slightly less massivethan the Sun and related to it, a change in the temperature gradient.Based on spectra collected with the ELODIE spectrograph at the 1.93-mtelescope of the Observatoire de Haute-Provence (France).Full Table 1 is only available in electronic form athttp://www.edpsciences.org

C, S, Zn and Cu abundances in planet-harbouring stars
We present a detailed and uniform study of C, S, Zn and Cu abundances ina large set of planet host stars, as well as in a homogeneous comparisonsample of solar-type dwarfs with no known planetary-mass companions.Carbon abundances were derived by EW measurement of two C I opticallines, while spectral syntheses were performed for S, Zn and Cu. Weinvestigated possible differences in the behaviours of the volatiles C,S and Zn and in the refractory Cu in targets with and without knownplanets in order to check possible anomalies due to the presence ofplanets. We found that the abundance distributions in stars withexoplanets are the high [Fe/H] extensions of the trends traced by thecomparison sample. All volatile elements we studied show [X/Fe] trendsdecreasing with [Fe/H] in the metallicity range -0.8< [Fe/H] <0.5, with significantly negative slopes of -0.39±0.04 and-0.35±0.04 for C and S, respectively. A comparison of ourabundances with those available in the literature shows good agreementin most cases.Based on observations collected at the La Silla Observatory, ESO(Chile), with the CORALIE spectrograph at the 1.2-m Euler Swisstelescope and with the FEROS spectrograph at the 1.52-m and 2.2-m ESOtelescopes, at the Paranal Observatory, ESO (Chile), using the UVESspectrograph at the VLT/UT2 Kueyen telescope, and with the UES and SARGspectrographs at the 4-m William Hershel Telescope (WHT) and at the3.5-m TNG telescope, respectively, both at La Palma (Canary Islands).Tables 4-16 are only available in electronic form athttp://www.edpsciences.org

Beryllium anomalies in solar-type field stars
We present a study of beryllium (Be) abundances in a large sample offield solar-type dwarfs and sub-giants spanning a large range ofeffective temperatures. The Be abundances, computed using a very uniformset of stellar parameters and near-UV spectra obtained with 3 differentinstruments, are used to study the depletion of this light element. Theanalysis shows that Be is severely depleted for F stars, as expected bythe light-element depletion models. However, we also show that berylliumabundances decrease with decreasing temperature for stars cooler than˜6000 K, a result that cannot be explained by current theoreticalmodels including rotational mixing, but that is, at least in part,expected from the models that take into account internal wave physics.In particular, the light element abundances of the coolest and youngeststars in our sample suggest that Be, as well as lithium (Li), hasalready been burned early during their evolution. Furthermore, we findstrong evidence for the existence of a Be-gap for solar-temperaturestars. The analysis of Li and Be abundances in the sub-giants of oursample also shows the presence of one case that has still detectableamounts of Li, while Be is severely depleted. Finally, we compare thederived Be abundances with Li abundances derived using the same set ofstellar parameters. This gives us the possibility to explore thetemperatures for which the onset of Li and Be depletion occurs.Based on observations collected with the VLT/UT2 Kueyen telescope(Paranal Observatory, ESO, Chile) using the UVES spectrograph (Observingruns 66.C-0116 A, 66.D-0284 A, and 68.C-0058 A), and with the WilliamHerschel and Nordic Optical Telescopes, operated at the island of LaPalma by the Isaac Newton Group and jointly by Denmark, Finland,Iceland, and Norway, respectively, in the Spanish Observatorio del Roquede los Muchachos of the Instituto de Astrofísica de Canarias.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Nitrogen abundances in planet-harbouring stars
We present a detailed spectroscopic analysis of nitrogen abundances in91 solar-type stars, 66 with and 25 without known planetary masscompanions. All comparison sample stars and 28 planet hosts wereanalysed by spectral synthesis of the near-UV NH band at 3360 Åobserved at high resolution with the VLT/UVES, while the near-IR N I7468 Å was measured in 31 objects. These two abundance indicatorsare in good agreement. We found that nitrogen abundance scales with thatof iron in the metallicity range -0.6 < [Fe/H] <+0.4 with theslope 1.08 ± 0.05. Our results show that the bulk of nitrogenproduction at high metallicities was coupled with iron. We found thatthe nitrogen abundance distribution in stars with exoplanets is the high[Fe/H] extension of the curve traced by the comparison sample of starswith no known planets. A comparison of our nitrogen abundances withthose available in the literature shows a good agreement.

On the correlation of elemental abundances with kinematics among galactic disk stars
We have performed the detailed analysis of 174 high-resolution spectraof FGK dwarfs obtained with the ELODIE echelle spectrograph at theObservatoire de Haute-Provence. Abundances of Fe, Si and Ni have beendetermined from equivalent widths under LTE approximation, whereasabundances of Mg have been determined under NLTE approximation usingequivalent widths of 4 lines and profiles of 5 lines. Spatial velocitieswith an accuracy better than 1 km s-1, as well as orbits,have been computed for all stars. They have been used to define 2subsamples kinematically representative of the thin disk and the thickdisk in order to highlight their respective properties. A transitionoccurs at [Fe/H] =-0.3. Stars more metal-rich than this value have aflat distribution with Zmax;<1 kpc and σW<20 km s-1, and a narrow distribution of [α/Fe].There exist stars in this metallicity regime which cannot belong to thethin disk because of their excentric orbits, neither to the thick diskbecause of their low scale height. Several thin disk stars areidentified down to [Fe/H] =-0.80. Their Mg enrichment is lower thanthick disk stars with the same metallicity. We confirm from a largersample the results of Feltzing et al. (\cite{felt03}) and Bensby et al.(\cite{ben03}) showing a decrease of [α/Fe] with [Fe/H] in thethick disk interpreted as the signature of the SNIa which haveprogressively enriched the ISM with iron. However our data suggest thatthe star formation in the thick disk stopped when the enrichment was[Fe/H] =-0.30, [Mg/Fe] =+0.20, [Si/Fe] =+0.17. A vertical gradient in[α/Fe] may exist in the thick disk but should be confirmed with alarger sample. Finally we have identified 2 new candidates of the HR1614moving group.Based on spectra collected with the ELODIE spectrograph at the 1.93-mtelescope of the Observatoire de Haute Provence (France).Tables 3 and 8 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/551

Spectroscopic [Fe/H] for 98 extra-solar planet-host stars. Exploring the probability of planet formation
We present stellar parameters and metallicities, obtained from adetailed spectroscopic analysis, for a large sample of 98 stars known tobe orbited by planetary mass companions (almost all known targets), aswell as for a volume-limited sample of 41 stars not known to host anyplanet. For most of the stars the stellar parameters are revisedversions of the ones presented in our previous work. However, we alsopresent parameters for 18 stars with planets not previously published,and a compilation of stellar parameters for the remaining 4 planet-hostsfor which we could not obtain a spectrum. A comparison of our stellarparameters with values of Teff, log g, and [Fe/H] availablein the literature shows a remarkable agreement. In particular, ourspectroscopic log g values are now very close to trigonometric log gestimates based on Hipparcos parallaxes. The derived [Fe/H] values arethen used to confirm the previously known result that planets are moreprevalent around metal-rich stars. Furthermore, we confirm that thefrequency of planets is a strongly rising function of the stellarmetallicity, at least for stars with [Fe/H] > 0. While only about 3%of the solar metallicity stars in the CORALIE planet search sample werefound to be orbited by a planet, this number increases to more than 25%for stars with [Fe/H] above +0.3. Curiously, our results also suggestthat these percentages might remain relatively constant for values of[Fe/H] lower than about solar, increasing then linearly with the massfraction of heavy elements. These results are discussed in the contextof the theories of planetary formation.Based on observations collected at the La Silla Observatory, ESO(Chile), with the CORALIE spectrograph at the 1.2-m Euler Swisstelescope and the FEROS spectrograph at the 1.52-m and 2.2-m ESOtelescopes, with the VLT/UT2 Kueyen telescope (Paranal Observatory, ESO,Chile) using the UVES spectrograph (Observing run 67.C-0206, in servicemode), with the TNG and William Herschel Telescopes, both operated atthe island of La Palma, and with the ELODIE spectrograph at the 1.93-mtelescope at the Observatoire de Haute Provence.

Library of flux-calibrated echelle spectra of southern late-type dwarfs with different activity levels
We present Echelle spectra of 91 late-type dwarfs, of spectral typesfrom F to M and of different levels of chromospheric activity, obtainedwith the 2.15 m telescope of the CASLEO Observatory located in theArgentinean Andes. Our observations range from 3890 to 6690 Å, ata spectral resolution from 0.141 to 0.249 Å per pixel(R=λ/δ λ ≈ 26 400). The observations were fluxcalibrated with the aid of long slit spectra. A version of thecalibrated spectra is available via the World Wide Web.Table 2 is also available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/414/699The spectra are available as FITS and ascii-files at the URL:http://www.iafe.uba.ar/cincunegui/spectra/Table2.html. They are alsoavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/414/699. When convertingthe fits to ascii, the spectra were oversampled to a constant δλ ≈ 0.15 Å.Table 2 is also available in electronic form at the CDS via anonymous

Lithium in stars with exoplanets
We present a comparison of the lithium abundances of stars with andwithout planetary-mass companions. New lithium abundances are reportedin 79 planet hosts and 38 stars from a comparison sample. When the Liabundances of planet host stars are compared with the 157 stars in thesample of field stars of Chen et al. (\cite{Chen2001}) we find that theLi abundance distribution is significantly different, and that there isa possible excess of Li depletion in planet host stars with effectivetemperatures in the range 5600-5850 K, whereas we find no significantdifferences in the temperature range 5850-6350 K. We have searched forstatistically significant correlations between the Li abundance ofparent stars and various parameters of the planetary companions. We donot find any strong correlation, although there are may be a hint of apossible gap in the Li distribution of massive planet host stars.Based on observations collected at the La Silla Observatory, ESO(Chile), with the CORALIE spectrograph at the 1.2 m Euler Swisstelescope, and with the FEROS spectrograph at the 1.52 m ESO telescope,and using the UES spectrograph at the 4.2 m William Herschel Telescope(WHT) and SARG spectrograph at the 3.5 m Telescopio Nazional Galileo onLa Palma (Canary Islands).

Some anomalies in the occurrence of debris discs around main-sequence A and G stars
Debris discs consist of large dust grains that are generated bycollisions of comets or asteroids around main-sequence stars, and thequantity and distribution of debris may be used to detect the presenceof perturbing planets akin to Neptune. We use stellar and disc surveysto compare the material seen around A- and G-type main-sequence stars.Debris is detected much more commonly towards A stars, even when acomparison is made only with G stars of comparable age. Detection ratesare consistent with disc durations of ~0.5 Gyr, which may occur at anytime during the main sequence. The higher detection rate for A stars canresult from this duration being a larger fraction of the main-sequencelifetime, possibly boosted by a globally slightly larger disc mass thanfor the G-type counterparts. The disc mass range at any given age is afactor of at least ~100 and any systematic decline with time is slow,with a power law estimated to not be steeper than t-1/2.Comparison with models shows that dust can be expected as late as a fewGyr when perturbing planetesimals form slowly at large orbital radii.Currently, the Solar system has little dust because the radius of theKuiper Belt is small and hence the time-scale to produce planetesimalswas less than 1 Gyr. However, the apparently constant duration of ~0.5Gyr when dust is visible is not predicted by the models.

Cross-correlation and maximum-likelihood analysis: a new approach to combining cross-correlation functions
This paper presents a new approach to combining cross-correlationfunctions. The combination is based on a maximum-likelihood approach anduses a non-linear combination scheme. It can be effective for radialvelocity analysis of multi-order spectra, or for analysis of multipleexposures of the same object. Simulations are presented to show thepotential of the suggested combination scheme. The technique has alreadybeen used to detect a very faint companion of HD 41004.

Target Selection for SETI. II. Tycho-2 Dwarfs, Old Open Clusters, and the Nearest 100 Stars
We present the full target list and prioritization algorithm developedfor use by the microwave search for technological signals at the SETIInstitute. We have included the Catalog of Nearby Habitable StellarSystems (HabCat, described in Paper I), all of the nearest 100 stars and14 old open clusters. This is further augmented by a subset of theTycho-2 catalog based on reduced proper motions, and this larger catalogshould routinely provide at least three target stars within the largeprimary field of view of the Allen Telescope Array. The algorithm forprioritizing objects in the full target list includes scoring based onthe subset category of each target (i.e., HabCat, cluster, Tycho-2, ornearest 100), its distance (if known), and its proximity to the Sun onthe color-magnitude diagram.

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 Parsecs: The Northern Sample. I.
We have embarked on a project, under the aegis of the Nearby Stars(NStars)/Space Interferometry Mission Preparatory Science Program, toobtain spectra, spectral types, and, where feasible, basic physicalparameters for the 3600 dwarf and giant stars earlier than M0 within 40pc of the Sun. In this paper, we report on the results of this projectfor the first 664 stars in the northern hemisphere. These resultsinclude precise, homogeneous spectral types, basic physical parameters(including the effective temperature, surface gravity, and overallmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. Observed and derived data presented in this paper arealso available on the project's Web site.

Enviar un nou article


Enllaços Relacionats

  • - No s'ha trobat enllaços -
Enviar un nou enllaç


Membre dels grups següents:


Dades d'Observació i Astrometria

Constel·lació:Orion
Ascensió Recta:05h48m34.90s
Declinació:-04°05'41.0"
Magnitud Aparent:5.97
Distancia:15.564 parsecs
Moviment propi RA:62.2
Moviment propi Dec:-228.6
B-T magnitude:6.724
V-T magnitude:6.037

Catàlegs i designacions:
Noms Propis   (Edit)
HD 1989HD 38858
TYCHO-2 2000TYC 4776-1306-1
USNO-A2.0USNO-A2 0825-01685764
BSC 1991HR 2007
HIPHIP 27435

→ Sol·licitar més catàlegs i designacions de VizieR