Inici     Començant     Sobreviure a l'Univers    
Inhabited Sky
    News@Sky     Astro Fotografia     La Col·lecció     Fòrum     Blog New!     FAQ     Premsa     Login  

HD 94280


Contingut

Imatges

Carregar la teva Imatge

DSS Images   Other Images


Articles Relacionats

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

The [Zn/Fe] - [Fe/H] trend for disk and halo stars
Zn abundances, derived from a model atmosphere analysis of theλ6362.35 Å Zn I line, are presented for 44 thin disk, 10thick disk and 8 halo dwarf stars in the metallicity range -1.0 <[Fe/H] < +0.2. It is found that [Zn/Fe] in thin disk stars shows aslight increasing trend with decreasing metallicity reaching a value[Zn/Fe] ≃ +0.1 at [Fe/H] = -0.6. The thick disk stars in themetallicity range -0.9 < [Fe/H] < -0.6 have an average [Zn/Fe]≃ +0.15 dex, whereas five alpha-poor and Ni-poor halo stars in thesame metallicity range have [Zn/Fe] ≃ 0.0 dex. These resultsindicate that Zn is not an exact tracer of Fe as often assumed inabundance studies of damped Lyman-alpha systems (DLAs). A betterunderstanding of the nucleosynthesis of Zn is needed in order to obtainmore detailed information on the past history of star formation in DLAsfrom e.g. the observed sulphur/zinc ratio.Based on observations collected at the National AstronomicalObservatories, Xinglong, China and the European Southern Observatory, LaSilla, Chile (ESO No. 67.D-0106).

Chromospheric Ca II Emission in Nearby F, G, K, and M Stars
We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.

The Indo-US Library of Coudé Feed Stellar Spectra
We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Lithium abundances of the local thin disc stars
Lithium abundances are presented for a sample of 181 nearby F and Gdwarfs with accurate Hipparcos parallaxes. The stars are on circularorbits about the Galactic centre and, hence, are identified as belongingto the thin disc. This sample is combined with two published surveys toprovide a catalogue of lithium abundances, metallicities ([Fe/H]),masses, and ages for 451 F-G dwarfs, almost all belonging to the thindisc. The lithium abundances are compared and contrasted with publishedlithium abundances for F and G stars in local open clusters. The fieldstars span a larger range in [Fe/H] than the clusters for which [Fe/H]~=0.0 +/- 0.2. The initial (i.e. interstellar) lithium abundance of thesolar neighbourhood, as derived from stars for which astration oflithium is believed to be unimportant, is traced from logɛ(Li) =2.2 at [Fe/H]=-1 to logɛ(Li) = 3.2 at +0.1. This form for theevolution is dependent on the assumption that astration of lithium isnegligible for the stars defining the relation. An argument is advancedthat this latter assumption may not be entirely correct, and, theevolution of lithium with [Fe/H] may be flatter than previouslysupposed. A sharp Hyades-like Li dip is not seen among the field starsand appears to be replaced by a large spread among lithium abundances ofstars more massive than the lower mass limit of the dip. Astration oflithium by stars of masses too low to participate in the Li dip isdiscussed. These stars show little to no spread in lithium abundance ata given [Fe/H] and mass.

Statistical cataloging of archival data for luminosity class IV-V stars. II. The epoch 2001 [Fe/H] catalog
This paper describes the derivation of an updated statistical catalog ofmetallicities. The stars for which those metallicities apply are ofspectral types F, G, and K, and are on or near the main sequence. Theinput data for the catalog are values of [Fe/H] published before 2002February and derived from lines of weak and moderate strength. Theanalyses used to derive the data have been based on one-dimensional LTEmodel atmospheres. Initial adjustments which are applied to the datainclude corrections to a uniform temperature scale which is given in acompanion paper (see Taylor \cite{t02}). After correction, the data aresubjected to a statistical analysis. For each of 941 stars considered,the results of that analysis include a mean value of [Fe/H], an rmserror, an associated number of degrees of freedom, and one or moreidentification numbers for source papers. The catalog of these resultssupersedes an earlier version given by Taylor (\cite{t94b}).Catalog is only available in electronic form at the CDS via anonymousftp cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/731

Statistical cataloging of archival data for luminosity class IV-V stars. I. The epoch 2001 temperature catalog
This paper is one of a pair in which temperatures and metallicitycatalogs for class IV-V stars are considered. The temperature catalogdescribed here is derived from a calibration based on stellar angulardiameters. If published calibrations of this kind are compared by usingcolor-index transformations, temperature-dependent differences among thecalibrations are commonly found. However, such differences are minimizedif attention is restricted to calibrations based on Johnson V-K. Acalibration of this sort from Di Benedetto (\cite{dib98}) is thereforetested and adopted. That calibration is then applied to spectroscopicand photometric data, with the latter predominating. Cousins R-Iphotometry receives special attention because of its high precision andlow metallicity sensitivity. Testing of temperatures derived from thecalibration suggests that their accuracy and precision are satisfactory,though further testing will be warranted as new results appear. Thesetemperatures appear in the catalog as values of theta equiv5040/T(effective). Most of these entries are accompanied by measured orderived values of Cousins R-I. Entries are given for 951 stars.Catalog is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/721

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

The C and N abundances in disk stars
Abundance analysis of carbon and nitrogen has been performed for asample of 90 F and G type main-sequence disk stars with a metallicityrange of -1.0 < [Fe/H] <+0.2 using the \ion{C} i and N I lines. Weconfirm a moderate carbon excess in the most metal-poor disk dwarfsfound in previous investigations. Our results suggest that carbon isenriched by superwinds of metal-rich massive stars at the beginning ofthe disk evolution, while a significant amount of carbon is contributedby low-mass stars in the late stage. The observed behavior of [N/Fe] isabout solar in the disk stars, irrespective of the metallicity. Thisresult suggests that nitrogen is produced mostly by intermediate-massstars. Based on observations carried out at National Astrono- micalObservatories (Xinglong, China).

Lithium abundances for 185 main-sequence stars: Galactic evolution and stellar depletion of lithium
We present a survey of lithium abundances in 185 main-sequence fieldstars with 5600 <~ Teff <~ 6600 K and -1.4 <~ [Fe/H]<~ +0.2 based on new measurements of the equivalent width of thelambda 6708 Li I line in high-resolution spectra of 130 stars and areanalysis of data for 55 stars from Lambert et al. (\cite{Lambert91}).The survey takes advantage of improved photometric and spectroscopicdeterminations of effective temperature and metallicity as well as massand age derived from Hipparcos absolute magnitudes, offering anopportunity to investigate the behaviour of Li as a function of theseparameters. An interesting result from this study is the presence of alarge gap in the log varepsilon (Li) - Teff plane, whichdistinguishes ``Li-dip'' stars like those first identified in the Hyadescluster by Boesgaard & Tripicco (\cite{Boesgaard86}) from otherstars with a much higher Li abundance. The Li-dip stars concentrate on acertain mass, which decreases with metallicity from about 1.4Msun at solar metallicity to 1.1 Msun at [Fe/H] =~-1.0. Excluding the Li-dip stars and a small group of lower mass starswith Teff < 5900 K and log varepsilon (Li) < 1.5, theremaining stars, when divided into four metallicity groups, may show acorrelation between Li abundance and stellar mass. The dispersion aroundthe log varepsilon (Li)-mass relation is about 0.2 dex below [Fe/H] =~-0.4 and 0.3 dex above this metallicity, which cannot be explained byobservational errors or differences in metallicity. Furthermore, thereis no correlation between the residuals of the log varepsilon (Li)-massrelations and stellar age, which ranges from 1.5 Gyr to about 15 Gyr.This suggests that Li depletion occurs early in stellar life and thatparameters other than stellar mass and metallicity affect the degree ofdepletion, e.g. initial rotation velocity and/or the rate of angularmomentum loss. It cannot be excluded, however, that a cosmic scatter ofthe Li abundance in the Galaxy at a given metallicity contributes to thedispersion in Li abundance. These problems make it difficult todetermine the Galactic evolution of Li from the data, but a comparisonof the upper envelope of the distribution of stars in the log varepsilon(Li) - [Fe/H] plane with recent Galactic evolutionary models by Romanoet al. (\cite{Romano99}) suggests that novae are a major source for theLi production in the Galactic disk; their occurrence seems to be theexplanation for the steep increase of Li abundance at [Fe/H] =~ -0.4.Based on observations carried out at Beijing Astronomical Observatory(Xinglong, PR China) and European Southern Observatory, La Silla, Chile.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/371/943 and athttp://www.edpsciences.org

Chemical composition of 90 F and G disk dwarfs
High resolution, high S/N spectra have been obtained for a sample of 90F and G main-sequence disk stars covering the metallicity range -1.0< [Fe/H] < +0.1, and have been analysed in a parallel way to thework of Edvardsson et al. (\cite{Edvardsson93a}) in order to re-inspecttheir results and to reveal new information on the chemical evolution ofthe Galactic disk. Compared to Edvardsson et al. the present studyincludes several improvements. Effective temperatures are based on theAlonso et al. (\cite{Alonso96}) calibration of color indices by theinfrared flux method and surface gravities are calculated from Hipparcosparallaxes, which also allow more accurate ages to be calculated from acomparison of M_V and T_eff with isochrones. In addition, more reliablekinematical parameters are derived from Hipparcos distances and propermotions in combination with accurate radial velocities. Finally, alarger spectral coverage, 5600 - 8800 Ä, makes it possible toimprove the abundance accuracy by studying more lines and to discussseveral elements not included in the work of Edvardsson et al. Thepresent paper provides the data and discusses some general results ofthe abundance survey. A group of stars in the metallicity range of -1.0< [Fe/H] < -0.6 having a small mean Galactocentric distance in thestellar orbits, R_m < 7 kpc, are shown to be older than the otherdisk stars and probably belong to the thick disk. Excluding these stars,a slight decreasing trend of [Fe/H] with increasing R_m and age isfound, but a large scatter in [Fe/H] (up to 0.5 dex) is present at agiven age and R_m. Abundance ratios with respect to Fe show, on theother hand, no significant scatter at a given [Fe/H] . The derivedtrends of O, Mg, Si, Ca, Ti, Ni and Ba as a function of [Fe/H] agreerather well with those of Edvardsson et al., but the overabundance of Naand Al for metal-poor stars found in their work is not confirmed.Furthermore, the Galactic evolution of elements not included inEdvardsson et al., K, V and Cr, is studied. It is concluded that theterms ``alpha elements" and ``iron-peak elements" cannot be used toindicate production and evolution by specific nucleosynthesis processes;each element seems to have a unique enrichment history. Based onobservations carried out at the Beijing Astronomical Observatory,Xinglong, PR China.}\fnmsep\thanks{ Tables~3, 4 and 5 are only availablein electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.htmlor\protect\\ http://www.edpsciences.org

Sc and Mn abundances in disk and metal-rich halo stars
Sc and Mn abundances are determined for 119 F and G main-sequence starswith -1.4 < [Fe/H] < +0.1, representing stars from the thin disk,the thick disk and the halo. The results indicate that Sc behaves likean alpha element, showing a decreasing [Sc/Fe] with increasingmetallicity in disk stars and a dual pattern in the kinematicallyselected halo stars. In contrast, Mn shows an increase from [Mn/Fe] =~-0.5 at [Fe/H] = -1.4 to zero at solar metallicity. There appears to bea discontinuity or sharp increase of [Mn/Fe] at [Fe/H] =~ -0.7corresponding to the transition between the thick and the thin disk. Itis discussed if supernovae of Type Ia are a major source of Mn in theGalactic disk or if the trend of [Mn/Fe] vs. [Fe/H] can be explained bynucleosynthesis in Type II supernovae with a strong metallicitydependence of the yield. Based on observations carried out at theEuropean Southern Observatory, La Silla, Chile, and Beijing AstronomicalObservatory, Xinglong, China

Sixth Catalogue of Fundamental Stars (FK6). Part III. Additional fundamental stars with direct solutions
The FK6 is a suitable combination of the results of the HIPPARCOSastrometry satellite with ground-based data, measured over a longinterval of time and summarized mainly in the FK5. Part III of the FK6(abbreviated FK6(III)) contains additional fundamental stars with directsolutions. Such direct solutions are appropriate for single stars or forobjects which can be treated like single stars. Part III of the FK6contains in total 3272 stars. Their ground-based data stem from thebright extension of the FK5 (735 stars), from the catalogue of remainingSup stars (RSup, 732 stars), and from the faint extension of the FK5(1805 stars). From the 3272 stars in Part III, we have selected 1928objects as "astrometrically excellent stars", since their instantaneousproper motions and their mean (time-averaged) ones do not differsignificantly. Hence most of the astrometrically excellent stars arewell-behaving "single-star candidates" with good astrometric data. Thesestars are most suited for high-precision astrometry. On the other hand,354 of the stars in Part III are Δμ binaries in the sense ofWielen et al. (1999). Many of them are newly discovered probablebinaries with no other hitherto known indication of binarity. The FK6gives, besides the classical "single-star mode" solutions (SI mode),other solutions which take into account the fact that hidden astrometricbinaries among "apparently single-stars" introduce sizable "cosmicerrors" into the quasi-instantaneously measured HIPPARCOS proper motionsand positions. The FK6 gives, in addition to the SI mode, the "long-termprediction (LTP) mode" and the "short-term prediction (STP) mode". TheseLTP and STP modes are on average the most precise solutions forapparently single stars, depending on the epoch difference with respectto the HIPPARCOS epoch of about 1991. The typical mean error of anFK6(III) proper motion in the single-star mode is 0.59 mas/year. This isa factor of 1.34 better than the typical HIPPARCOS errors for thesestars of 0.79 mas/year. In the long-term prediction mode, in whichcosmic errors are taken into account, the FK6(III) proper motions have atypical mean error of 0.93 mas/year, which is by a factor of about 2better than the corresponding error for the HIPPARCOS values of 1.83mas/year (cosmic errors included).

Improved Mean Positions and Proper Motions for the 995 FK4 Sup Stars not Included in the FK5 Extension
Not Available

UBVRI photometry of FK4 and FK4 supplement stars
Photometric UBVRI observations of 172 Southern Hemisphere stars of theFK4 and FK4-Supplement catalogs, obtained using a dry-ice-cooledphotomultiplier on the 50-cm telescope at ESO on 37 nights during1982-1983 are reported. The data are presented in tables and graphs andbriefly characterized.

A catalogue of four-color photometry of late F-type stars.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1969AJ.....74..705P&db_key=AST

Enviar un nou article


Enllaços Relacionats

  • - No s'ha trobat enllaços -
Enviar un nou enllaç


Membre dels grups següents:


Dades d'Observació i Astrometria

Constel·lació:Crater
Ascensió Recta:10h52m48.94s
Declinació:-06°49'19.2"
Magnitud Aparent:7.184
Distancia:43.84 parsecs
Moviment propi RA:-210.2
Moviment propi Dec:-188.1
B-T magnitude:7.842
V-T magnitude:7.239

Catàlegs i designacions:
Noms Propis   (Edit)
HD 1989HD 94280
TYCHO-2 2000TYC 4920-351-1
USNO-A2.0USNO-A2 0825-07328132
HIPHIP 53196

→ Sol·licitar més catàlegs i designacions de VizieR