Садржај
Слике
Уплоадјуј своје слике
DSS Images Other Images
Везани чланци
Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.
| The Planet-Metallicity Correlation We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.
| Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}
| Chromospheric Ca II Emission in Nearby F, G, K, and M Stars We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.
| Radial Velocities for 889 Late-Type Stars We report radial velocities for 844 FGKM-type main-sequence and subgiantstars and 45 K giants, most of which had either low-precision velocitymeasurements or none at all. These velocities differ from the standardstars of Udry et al. by 0.035 km s-1 (rms) for the 26 FGKstandard stars in common. The zero point of our velocities differs fromthat of Udry et al.: =+0.053km s-1. Thus, these new velocities agree with the best knownstandard stars both in precision and zero point, to well within 0.1 kms-1. Nonetheless, both these velocities and the standardssuffer from three sources of systematic error, namely, convectiveblueshift, gravitational redshift, and spectral type mismatch of thereference spectrum. These systematic errors are here forced to be zerofor G2 V stars by using the Sun as reference, with Vesta and day sky asproxies. But for spectral types departing from solar, the systematicerrors reach 0.3 km s-1 in the F and K stars and 0.4 kms-1 in M dwarfs. Multiple spectra were obtained for all 889stars during 4 years, and 782 of them exhibit velocity scatter less than0.1 km s-1. These stars may serve as radial velocitystandards if they remain constant in velocity. We found 11 newspectroscopic binaries and report orbital parameters for them. Based onobservations obtained at the W. M. Keck Observatory, which is operatedjointly by the University of California and the California Institute ofTechnology, and on observations obtained at the Lick Observatory, whichis operated by the University of California.
| The Vienna-KPNO search for Doppler-imaging candidate stars. I. A catalog of stellar-activity indicators for 1058 late-type Hipparcos stars We present the results from a spectroscopic Ca ii H&K survey of 1058late-type stars selected from a color-limited subsample of the Hipparcoscatalog. Out of these 1058 stars, 371 stars were found to showsignificant H&K emission, most of them previously unknown; 23% withstrong emission, 36% with moderate emission, and 41% with weak emission.These spectra are used to determine absolute H&K emission-linefluxes, radial velocities, and equivalent widths of theluminosity-sensitive Sr ii line at 4077 Ä. Red-wavelengthspectroscopic and Strömgren y photometric follow-up observations ofthe 371 stars with H&K emission are used to additionally determinethe absolute Hα -core flux, the lithium abundance from the Li i6708 Å equivalent width, the rotational velocity vsin i, theradial velocity, and the light variations and its periodicity. Thelatter is interpreted as the stellar rotation period due to aninhomogeneous surface brightness distribution. 156 stars were found withphotometric periods between 0.29 and 64 days, 11 additional systemsshowed quasi-periodic variations possibly in excess of ~50 days. Further54 stars had variations but no unique period was found, and four starswere essentially constant. Altogether, 170 new variable stars werediscovered. Additionally, we found 17 new SB1 (plus 16 new candidates)and 19 new SB2 systems, as well as one definite and two possible new SB3systems. Finally, we present a list of 21 stars that we think are mostsuitable candidates for a detailed study with the Doppler-imagingtechnique. Tables A1--A3 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html
| Photometric Measurements of the Fields of More than 700 Nearby Stars In preparation for optical/IR interferometric searches for substellarcompanions of nearby stars, we undertook to characterize the fields ofall nearby stars visible from the Northern Hemisphere to determinesuitable companions for interferometric phase referencing. Because theKeck Interferometer in particular will be able to phase-reference oncompanions within the isoplanatic patch (30") to about 17th magnitude atK, we took images at V, r, and i that were deep enough to determine iffield stars were present to this magnitude around nearby stars using aspot-coated CCD. We report on 733 fields containing 10,629 measurementsin up to three filters (Gunn i, r and Johnson V) of nearby stars down toabout 13th magnitude at V.
| Classification of Population II Stars in the Vilnius Photometric System. II. Results The results of photometric classification of 848 true and suspectedPopulation II stars, some of which were found to belong to Population I,are presented. The stars were classified using a new calibrationdescribed in Paper I (Bartkevicius & Lazauskaite 1996). We combinethese results with our results from Paper I and discuss in greaterdetail the following groups of stars: UU Herculis-type stars and otherhigh-galactic-latitude supergiants, field red horizontal-branch stars,metal-deficient visual binaries, metal-deficient subgiants, stars fromthe Catalogue of Metal-deficient F--M Stars Classified Photometrically(MDPH; Bartkevicius 1993) and stars from one of the HIPPARCOS programs(Bartkevicius 1994a). It is confirmed that high galactic latitudesupergiants from the Bartaya (1979) catalog are giants or even dwarfs.Some stars, identified by Rose (1985) and Tautvaisiene (1996a) as fieldRHB stars, appear to be ordinary giants according to our classification.Some of the visual binaries studied can be considered as physical pairs.Quite a large fraction of stars from the MDPH catalog are found to havesolar metallicity. A number of new possible UU Herculis-type stars, RHBstars and metal-deficient subgiants are identified.
| The catalogue of nearby stars metallicities. Not Available
| Preliminary Version of the Third Catalogue of Nearby Stars Not Available
| Some Cross-Reference Lists for the Catalog of Possible Nearby Stars Not Available
| Possible nearby stars brighter than tenth magnitude Basic data are compiled for 447 stars brighter than 10th visualmagnitude which may be within 25 pc of the sun and are missing from boththe Gliese (1969) and the Woolley et al. (1970) catalogs of nearbystars. The list includes 245 stars with photometric parallaxes, 17 starswith trigonometric parallaxes, and nine stars with dynamical parallaxes,all of which parallaxes are at least 0.040 arcsec, as well as 176 likelycandidates. The stars are grouped into six categories according to thereliability of absolute-magnitude estimates and ranked within each groupon the basis of calculated distance. The distance estimates incorporatea kinematic correction to the photometric parallaxes which is based onthe size of a star's proper motion. A list of stars brighter than 10thmag which appear in the Gliese but not in the Woolley et al. catalog isalso provided to facilitate cross-reference with existing catalogs ofnearby stars.
| Colors, luminosities, and motions of the nearer G-type stars Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1964AJ.....69..570E&db_key=AST
|
Додај нови чланак
Линкови у сродству са темом
Додај нови линк
Чланови следећих група \:
|
Посматрања и Астрометриски подаци
Сазвежђа: | Волар |
Ректацензија: | 14h53m11.92s |
Deклинација: | +28°30'29.8" |
Apparent магнитуда: | 7.924 |
Даљина: | 71.582 parsecs |
Proper motion RA: | -93.1 |
Proper motion Dec: | 87.5 |
B-T magnitude: | 9.07 |
V-T magnitude: | 8.019 |
Каталог и designations:
|